• 제목/요약/키워드: Unsteady Pressure Fluctuation

검색결과 71건 처리시간 0.021초

Numerical investigation of the unsteady flow of a hybrid CRP pod propulsion system at behind-hull condition

  • Zhang, Yuxin;Cheng, Xuankai;Feng, Liang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.918-927
    • /
    • 2020
  • Flows induced by hybrid CRP pod propulsion systems (CRP-POD) are fundamentally characterized by unsteadiness. This work presents a numerical study on the unsteady flow of a CRP-POD at behind-hull condition based on CFD (Computational Fluid Dynamics). Unsteady RANS method is adopted, coupled with SST k-u turbulence model and sliding mesh method. The propeller thrusts and torques obtained by CFD is validated by model tests and acceptable agreements are obtained. The time histories of shingle-blade loads and pressures near the hull surface are recorded for the analysis of unsteady flow features. The cases of forward propeller alone and aft propeller alone are also computed to distinguish the hull-propeller interaction and propeller-propeller interaction. The results show the blade loads of both forward and aft propellers strongly fluctuate with phase angles. For the forward propeller, the blade load fluctuation is mainly governed by the hull-propeller interaction, while the aft blade load is remarkably affected by the propeller-propeller interaction in terms of the load average and fluctuation pattern. The fields of pressure, vorticity and velocity are also analyzed to reveal the unsteady flow features.

터널을 통과하는 고속철도차량에 의해 형성되는 비정상 유동장의 수치해석 (Numerical Simulation of the Unsteady Flow Field Induced by a High-speed Train Passing through a Tunnel)

  • 권혁빈;이동호;김문상
    • 한국철도학회논문집
    • /
    • 제3권4호
    • /
    • pp.229-236
    • /
    • 2000
  • In this study, the unsteady flow field induced by a high-speed train passing through a tunnel is numerically simulated by using an axi-symmetric Euler Equation. The modified patched grid scheme applied to a structured grid system was used to handle the relative motion of a train. The hybrid-dimensional approach which mixed 1D and axi-symmetric dimension was used to reduce the computation time and memory storage. By employing the hybrid-dimensional approach, a long tunnel as much as 5 km was able to be simulated efficiently. The results show that the maximum pressure rise in the tunnel by the entrance of the train is a function of both train speed and train-tunnel cross-sectional area ratio. The unsteady pressure fluctuation in the tunnel and around the train was also investigated in the real condition; Korean high-speed train on the Seoul-Pusan line.

  • PDF

초음속 엔진의 흡입구 종말충격파와 연소실 화염의 상호간섭 동적연구 (Dynamic study on the Interaction between Terminal Shock train and Flame Fluctuation of Supersonic Propulsion System)

  • 염효원;김선경;김성진;성홍계;길현용;윤현걸
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.79-82
    • /
    • 2009
  • 초음속 엔진의 흡입구에서의 종말충격파와 연소실 화염의 상호간섭 연구를 위하여 초음속 엔진의 전영역, 즉 흡입구에서부터 연소실과 노즐까지 통합하여 비정상 연소수치해석을 수행하였다. 초음속 엔진이 상승하는 가속모드와 순항모드에서 상호간섭의 동적현상을 연구하였다. 흡입구에서의 충격파거동과 주요 위치에서 압력거동을 분석하고 초음속 엔진 전영역에서의 음향모드를 분석하여 현 시스템의 동적 거동을 파악하였다.

  • PDF

고 받음각 ONERA 70도 삼각날개 와류 유동의 압력 섭동 분석 (NUMERICAL ANALYSIS OF PRESSURE PERTURBATION OF DELTA WING VORTEX FLOW AT A HIGH ANGLE OF ATTACK)

  • 손미소;사정환;박수형;변영환
    • 한국전산유체공학회지
    • /
    • 제20권2호
    • /
    • pp.73-80
    • /
    • 2015
  • Delayed Detached-Eddy Simulation was conducted to investigate surface pressure coefficient distribution and surface pressure fluctuation over an ONERA 70-degree delta wing at a high angle of attack. Time-averaged surface pressure distribution is directly affected by the primary vortices, whereas the pressure fluctuation is influenced by the unsteady fluctuating boundary layer over the surface. And pressure coefficient, velocity, pressure fluctuation, and turbulent kinetic energy were analyzed along the vortex core in order to investigate the process of vortex breakdown. Consequently, strong pressure fluctuations were found where the vortex breakdown was occurred at x~620 mm. The turbulent kinetic energy abruptly increased and followed after the vortex breakdown.

Experimental Study on Surge Inception in a Centrifugal Compressor

  • Tamaki, Hideaki
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권4호
    • /
    • pp.409-417
    • /
    • 2009
  • An investigation of surge inception in a centrifugal compressor was done with measurements of steady and unsteady static pressure. Vaneless diffuser and vaned diffuser were tested. Analyses of the static pressure and the pressure fluctuation showed that stall at the impeller leading edge occurred at first, and then it extended to downstream. In case of the vaneless diffuser, deterioration of the pressure rise in the impeller triggered instability. For the vande diffuser, instability that was generated in the impeller propagated into the vaned diffuser, however the pressure recovery by the vaned diffuser made the operation of the compressor stable at low flow rate.

RANS simulation of cavitation and hull pressure fluctuation for marine propeller operating behind-hull condition

  • Paik, Kwang-Jun;Park, Hyung-Gil;Seo, Jongsoo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권4호
    • /
    • pp.502-512
    • /
    • 2013
  • Simulations of cavitation flow and hull pressure fluctuation for a marine propeller operating behind a hull using the unsteady Reynolds-Averaged Navier-Stokes equations (RANS) are presented. A full hull body submerged under the free surface is modeled in the computational domain to simulate directly the wake field of the ship at the propeller plane. Simulations are performed in design and ballast draught conditions to study the effect of cavitation number. And two propellers with slightly different geometry are simulated to validate the detectability of the numerical simulation. All simulations are performed using a commercial CFD software FLUENT. Cavitation patterns of the simulations show good agreement with the experimental results carried out in Samsung CAvitation Tunnel (SCAT). The simulation results for the hull pressure fluctuation induced by a propeller are also compared with the experimental results showing good agreement in the tendency and amplitude, especially, for the first blade frequency.

Unsteady Analysis of Impeller-Volute Interaction in Centrifugal Pump

  • Cheah, Kean Wee;Lee, Thong See;Winoto, Sonny H.
    • International Journal of Fluid Machinery and Systems
    • /
    • 제4권3호
    • /
    • pp.349-359
    • /
    • 2011
  • An unsteady numerical analysis has been carried out to study the strong impeller volute interaction of a centrifugal pump with six backward swept blades shrouded impeller. The numerical analysis is done by solving the three-dimensional Reynolds Averaged Navier-Stokes codes with standard k-${\varepsilon}$ two-equations turbulence model and wall regions are modeled with a scalable log-law wall function. The flow within the impeller passage is very smooth and following the curvature of the blade in stream-wise direction. However, the analysis shows that there is a recirculation zone near the leading edge even at design point. When the flow is discharged into volute casing circumferentially from the impeller outlet, the high velocity flow is severely distorted and formed a spiraling vortex flow within the volute casing. A spatial and temporal wake flow core development is captured dynamically and shows how the wake core diffuses. Near volute tongue region, the impeller/volute tongue strong interaction is observed based on the periodically fluctuating pressure at outlet. The results of existing analysis also proved that the pressure fluctuation periodically is due to the position of impeller blade relative to tongue.

입방형 채널 캐비티 유동의 PIV 해석 (PIV Analysis of Cubic Channel Cavity Flow)

  • 조대환;김진구;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제21권5호
    • /
    • pp.557-563
    • /
    • 1997
  • The unsteady flow in three-dimensional cubic cavity with narrow channel at upper region is investigated experimentally for three kinds of Reynolds number, 1*10/sup 4/, 3*10/sup 4/ and 5*10/sup 4/ based on the cavity width and cavity inlet mean flow velocity. Instant velocity vectors are obtained simultaneously at whole field by PIV(Particle Image Velocimetry). Wall pressure distributions are estimated using Poisson equation from the velocity data. Results of PIV reveal that severe unsteady flow fluctuation within the cavity are remarkable at all Reynolds numbers and sheared mixing layer phenomena are also found at the region where inlet driving flow is collided with the clock-wise rotating main primary vortex. Instant velocity profiles reveal that deformed forced vortex formation is observed throughout the entire region and spanwise kinetic energy migration is conspicuous.

  • PDF

1단 터빈 내 앞전 변형의 영향 하에 공력 특성에 대한 비정상 수치해석적 연구 (Numerical Study on the Unsteady Flow Characteristics under the Effect of Blade Leading Edge Modification in the 1st Stage of Axial Turbine)

  • 김대현;민재홍;정진택
    • 한국유체기계학회 논문집
    • /
    • 제12권1호
    • /
    • pp.22-27
    • /
    • 2009
  • The important problems that arise in the design and performance of the axial flow turbine are the prediction and control of secondary flows. Some progresses have been made on understanding flow conditions that occur when the inlet endwall boundary layer separates at the point in the endwall and rolls up into the horseshoe vortex. And the flows though an axial turbine tend to be extremely complex due to its inherent unsteady and viscous phenomena. The passing wakes generated from the trailing edge of the stator make an interaction with the rotor. Unsteady flow should be considered rotor/stator interactions. The main purpose of this research is control of secondary flow and improvement efficiency in turbine by leading edge modification in unsteady state. When the wake from the stator ran into the modified leading edge of the rotor, the leading edge generated the weak pressure fluctuation by complex passage flows. In conclusion, leading edge modification(bulb2) results in the reduced total pressure loss in the flow field.

왕복동식 압축기의 밸브거동과 압력맥동에 대한 연구 (Valve Motions and Gas Pulsations of a Reciprocating Compressor)

  • 이성욱;홍성철;주재만;박철희
    • 소음진동
    • /
    • 제9권4호
    • /
    • pp.754-760
    • /
    • 1999
  • The valve motions of a reciprocating compressor generate the pressure fluctuation at the plenum which is a main source of noise and vibration of a compressor unit. But a cycle of a compressor process consists of complicated phenomena interacting in a short period of time. A mathematical model is developed by simplifying and idealizing the complicated phenomena to simulate the compressor process. The governing equations about the pressure and working fluid flow are developed from the unsteady Bernoulli equation. The pressure fluctuations at the plenums are derived from the Helmholz's resonator model. The valves are modeled as one degree of freedom spring-mass-damper system. This model is verified by the experimental results.

  • PDF