• 제목/요약/키워드: Unsteady Fluid Flow

검색결과 516건 처리시간 0.025초

고차정확도 및 효율적인 전산유체해석을 위한 Adaptive Wavelet (THE ADAPTIVE WAVELET FOR HIGH ORDER ACCURATE AND EFFICIENT COMPUTATIONAL FLUID DYNAMICS)

  • 이도형
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.261-265
    • /
    • 2011
  • An adaptive wavelet transformation method with high order accuracy is proposed to allow efficient and accurate flow computations. While maintaining the original numerical accuracy of a conventional solver, the scheme offers efficient numerical procedure by using only adapted dataset. The main algorithm includes 3rd order wavelet decomposition and thresholding procedure. After the wavelet transformation, 3rd order of spatial and temporal accurate high order interpolation schemes are executed only at the points of the adapted dataset. For the other points, high order of interpolation method is utilized for residual evaluation. This high order interpolation scheme with high order adaptive wavelet transformation was applied to unsteady Euler flow computations. Through these processes, both computational efficiency and numerical accuracy are validated even in case of high order accurate unsteady flow computations.

  • PDF

Hall Effect on Couette Flow with Heat Transfer of a Dusty Conducting Fluid Between Parallel Porous Plates Under Exponential Decaying Pressure Gradient

  • Attia Hazem A.
    • Journal of Mechanical Science and Technology
    • /
    • 제20권4호
    • /
    • pp.569-579
    • /
    • 2006
  • In the present study, the unsteady Couette flow with heat transfer of a dusty viscous incompressible electrically conducting fluid under the influence of an exponential decaying pressure gradient is studied without neglecting the Hall effect. The parallel plates are assumed to be porous and subjected to a uniform suction from above and injection from below while the fluid is acted upon by an external uniform magnetic field is applied perpendicular to the plates. The governing equations are solved numerically using finite differences to yield the velocity and temperature distributions for both the fluid and dust particles.

A NOTE ON THE UNSTEADY FLOW OF DUSTY VISCOUS FLUID BETWEEN TWO PARALLEL PLATES

  • AJADI SURAJU OLUSEGUN
    • Journal of applied mathematics & informatics
    • /
    • 제18권1_2호
    • /
    • pp.393-403
    • /
    • 2005
  • We study the isothermal flow of a dusty viscous incompressible conducting fluid between two types of boundary motions- oscillatory and non-oscillatory, under the influence of gravitational force. Within the frame work of some physically realistic approximations and suitable boundary conditions, closed form solutions were obtained for the velocity profiles and the skin friction of the particulate flow. These results show that for a constant pressure gradient, only the velocity profile of the fluid and the skin friction are unaffected by gravity, while magnetic field is seen to affect both the fluid, particle velocities and the skin friction. Thus, our results are extension of previous results in literature, and graphical demonstration of some these solutions have been presented.

공동을 지나는 비정상 유동에 대한 LES 해석 (LES for unsteady flow past n cavity)

  • 임종수;신동신
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.791-794
    • /
    • 2002
  • Cavity is inevitably included in automobile vehicle configuration. The complex unsteady flow and sound waves generated by the cavity are very important issues because of the involved fluid dynamics and the practical importance in the field of aerodynamics. The LES method used is a conventional one with Smagorinsky eddy-viscosity model and the computational grid is small enough to be handled by workstation-level computers. LES can successfully simulate of cavity noise analysis.

  • PDF

Unsteady Flow with Cavitation in Viscoelastic Pipes

  • Soares, Alexandre K.;Covas, Didia I.C.;Ramos, Helena M.;Reis, Luisa Fernanda R.
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권4호
    • /
    • pp.269-277
    • /
    • 2009
  • The current paper focuses on the analysis of transient cavitating flow in pressurised polyethylene pipes, which are characterized by viscoelastic rheological behaviour. A hydraulic transient solver that describes fluid transients in plastic pipes has been developed. This solver incorporates the description of dynamic effects related to the energy dissipation (unsteady friction), the rheological mechanical behaviour of the viscoelastic pipe and the cavitating pipe flow. The Discrete Vapour Cavity Model (DVCM) and the Discrete Gas Cavity Model (DGCM) have been used to describe transient cavitating flow. Such models assume that discrete air cavities are formed in fixed sections of the pipeline and consider a constant wave speed in pipe reaches between these cavities. The cavity dimension (and pressure) is allowed to grow and collapse according to the mass conservation principle. An extensive experimental programme has been carried out in an experimental set-up composed of high-density polyethylene (HDPE) pipes, assembled at Instituto Superior T$\acute{e}$cnico of Lisbon, Portugal. The experimental facility is composed of a single pipeline with a total length of 203 m and inner diameter of 44 mm. The creep function of HDPE pipes was determined by using an inverse model based on transient pressure data collected during experimental runs without cavitating flow. Transient tests were carried out by the fast closure of the ball valves located at downstream end of the pipeline for the non-cavitating flow and at upstream for the cavitating flow. Once the rheological behaviour of HDPE pipes were known, computational simulations have been run in order to describe the hydraulic behaviour of the system for the cavitating pipe flow. The calibrated transient solver is capable of accurately describing the attenuation, dispersion and shape of observed transient pressures. The effects related to the viscoelasticity of HDPE pipes and to the occurrence of vapour pressures during the transient event are discussed.

진동하는 2차원 날개 단면 주위에 대한 점성 유동장 계산( Part 2. 동적실속이 발생하는 경우 ) (Computation of Viscous Flows around a Two-dimensional Oscillating Airfoil ( Part 2. with Dynamic Stall ))

  • 이평국;김형태
    • 대한조선학회논문집
    • /
    • 제44권1호
    • /
    • pp.16-25
    • /
    • 2007
  • Studies of unsteady-airfoil flows have been motivated mostly by efforts to avoid. or reduce such undesirable effects as flutter, noise and vibrations, dynamic stall. In this paper, we carry out a computational study of viscous flows around a two-dimensional oscillating airfoil to investigate unsteady effects in these important and challenging flows. A fully implicit incompressible RANS solver has been used for calculating unsteady viscous flows around an airfoil. The cell-centered End order finite volume method is utilized to discretize governing equations. in order to ease the flow computation for fluid region changing in time, improve the qualify of solution and simplify the grid generation for an oscillating airfoil flow, the computational method adopts a moving and deforming grid generation technique based on the multi-block grid topology. The numerical method is applied for calculating viscous flows of an oscillating NACA 0012 in uniform flow. The computational results are compared with available experimental data. Computed results are compared with experimental data and flow characteristics of the experiment are reproduced well In the computed results.

혼합탱크 내의 임펠라 형태에 따른 유동 특성에 관한 수치해석 (Numerical Study on Flow Patterns in a Stirred Tank with Impeller Types)

  • 송길섭;오석영;오정진
    • 한국유체기계학회 논문집
    • /
    • 제5권2호
    • /
    • pp.29-35
    • /
    • 2002
  • The present study is concerned with the flow patterns induced by various impellers in a rectangular tank. Impellers are FBT (Flat blade turbine), PBT (Pitched blade turbine), Shroud turbine, Rushton turbine, and Helical ribbon turbine types. The solutions of flows in moving reference frames require the use of 'moving' cell zone. The moving zone approaches are based on MRF (Multiple reference frame), which is a steady-state approximation and sliding method, which is an unsteady-state approximation. Numerical results using two moving zone approaches we compared with experiments by Ranade & Joshi, which have done extensive LDA measurements of the flow generated by a standard six-bladed Rushton turbine in a cylindrical baffled vessel. In this paper, we simulated the flow patterns with above-mentioned moving zone approaches and impellers. Turbulence model used is RNG $k-{\epsilon}$ model. Sliding-mesh method is more effective than MRF for simulating the rectangular tank with inlet and outlet. RNG $k-{\epsilon}$ model strongly underestimates the velocity of experimental data and velocity by Chen & Kim's model, but it seems to be correctly predicted in overall distribution.

Urea-SCR 단홀 Injector 노즐형상 변화에 따른 비정상유동특성의 해석적 연구 (Analytical Study on Unsteady Flow Characteristics of Urea-SCR Single Hole Injector depend on Nozzle Shape Change)

  • 황준환;박성영
    • 한국분무공학회지
    • /
    • 제24권3호
    • /
    • pp.105-113
    • /
    • 2019
  • In this paper, a study of Urea-SCR System for Dosing Injector for responding to enhanced environmental regulations has been conducted. There is a limit to the experimental approach due to the structural characteristics of the injector. In order to overcome this problem, The analysis was performed assuming unsteady turbulent flow through computational fluid analysis and the internal flow characteristics of the injector were analyzed. By changing the nozzle shape of the injector, the performance factors of the swirl injector by shape were selected and compared. The design parameters were modified by changing the diameter of the nozzle at a constant ratio compared to the base model. Swirl coefficient, outlet mass flow, and sac volume were selected as performance parameters of the injector. The Conv. model to which the taper was applied showed the dominance in mass flow rate, discharge coefficient and swirl because of the smooth fluid flow by shape. Swirl coefficient, outlet mass flow, and sac volume were selected as performance parameters of the injector. As a result of the comparison coefficient derivation with those performance parameters for comparing the performance of the model-specific injector, the Conv-140 model with the nozzle diameter expanded by 140% showed the best value of the comparison coefficient.

판막 거동을 고려한 이엽 기계식 인공심장 판막에서의 맥동유동에 관한 수치해석 (Numerical Study to the Pulsatile Blood Flow through a Bileaflet Mechanical Heart Valve including Moving Leaflets)

  • 최청렬;김창녕
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.504-512
    • /
    • 2002
  • Bileaflet mechanical valves have the complications such as hemolytic and thromboembolic events, leaflet damage, and leaflet break. These complications are related with the fluid velocity and shear stress characteristics of mechanical heart valves. This fact makes clear the importance of determining the fluid velocity and shear stress characteristics of mechanical heart valves, and requires a detailed understanding of these system properties and further substantial research. The first aim of current study is to introduce fluid-structure interaction method for calculation of unsteady and three-dimensional blood flow through bileaflet valve and leaflet behavior interacted with its flow, and to overcome the shortness of previous studies, where the leaflet motion has been ignored or simplified, by using FSI method. To accomplish this goal, a finite volume computational fluid dynamics code and a finite element structure dynamics code have been used concurrently to solve the flow and structure equations, respectively, to investigate the interaction between the blood flow and leaflet. Physiologic ventricular and aortic pressure waveforms were prescribed as flow boundary conditions. The interaction of aortic flow and valve motion were computed.

  • PDF

TWO DIMENSIONAL SIMULATION OF UNSTEADY CAVITATING FLOW IN A CASCADE

  • Kajishima T.;Ohta T.;Shin B. R.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.179-182
    • /
    • 2005
  • We have developed a numerical scheme to reproduce the unsteady flows with cavitation by the finite-difference method. The evolution of cavitation is represented by the source/sink of vapor phase in the incompressible liquid flow. The pressure-velocity coupling is based on the fractional-step method for incompressible fluid flows, in which the compressibility is taken into account through the low Mach number assumption. We applied our method for the cavitating flows in a two-dimensional cascade, which approximates the portion near the tip of inducer in liquid-fuel engine. Particular attention was focused on the influence of turbulence model in this report. Using an eddy viscosity model, although it was not an optimized one for our purpose, the agreement with the experimental observation was improved.

  • PDF