• Title/Summary/Keyword: Unstable system

Search Result 1,398, Processing Time 0.028 seconds

FACTS Application for the Voltage Stability with the Analysis of Bifurcation Theory (전압안정도 향상을 위한 FACTS의 적용과 Bifurcation이론 해석)

  • 주기성;김진오
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.394-402
    • /
    • 2000
  • This paper proposes a bifurcation theory method applied for voltage stability analysis and shows the improvement of voltage stability by attaching the FACTS devices in the power system. A power system is generally expressed by a set of equations of highly nonlinear dynamical system which includes system parameters(real or reactive power). Sometimes variation of parameters in the system may result in complication behaviors which give rise to system instability. The addition of FACTS increases the range of voltage stability in the power system. The effect of FACTS which improves voltage stability are illustrated in the case studies by delaying of Unstable Hopf Bifurcation and Saddle Node Bifurcation.

  • PDF

Modeling of Hybrid Generation System with Wind Turbine, Diesel Generator and Flywheel Energy Storage System (풍력-디젤-플라이휘일 하이브리드 발전시스템 모델링에 관한 연구)

  • Kim, Jae-Eon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.2979-2984
    • /
    • 2013
  • This paper proposes a modeling and controller design method of Flywheel Energy Storage System(FESS) for solving the unstable operation problem in hybrid generation system with wind turbine and diesel generator applied in island area. FESS is considered as a permanent magnetic synchronous machine connected to flywheel because of its efficiency. The controller of FESS is composed of AC/DC/AC back-to-back converter. The AC/DC converter is designed to charge/discharge according to the frequency variation and the DC/AC converter to operate to keep the DC bus voltage constant. The proposed modeling and controller design method of FESS was applied to hybrid generation system with wind turbine and diesel generator. The unstable operation problem owing to wind variations was solved through simulation results.

Dynamic Snapping and Frequency Characteristics of 3-Free-Nodes Spatial Truss Under the Periodic Loads (주기 하중을 받는 3-자유절점 공간 트러스의 동적 불안정 현상과 주파수 특성)

  • Shon, Sudeok;Hwang, Kyung-Ju
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.4
    • /
    • pp.149-158
    • /
    • 2020
  • The governing equation for a dome-type shallow spatial truss subjected to a transverse load is expressed in the form of the Duffing equation, and it can be derived by considering geometrical non-linearity. When this model under constant load exceeds the critical level, unstable behavior is appeared. This phenomenon changes sensitively as the number of free-nodes increases or depends on the imperfection of the system. When the load is a periodic function, more complex behavior and low critical levels can be expected. Thus, the dynamic unstable behavior and the change in the critical point of the 3-free-nodes space truss system were analyzed in this work. The 4-th order Runge-Kutta method was used in the system analysis, while the change in the frequency domain was analyzed through FFT. The sinusoidal wave and the beating wave were utilized as the periodic load function. This unstable situation was observed by the case when all nodes had same load vector as well as by the case that the load vector had slight difference. The results showed the critical buckling level of the periodic load was lower than that of the constant load. The value is greatly influenced by the period of the load, while a lower critical point was observed when it was closer to the natural frequency in the case of a linear system. The beating wave, which is attributed to the interference of the two frequencies, exhibits slightly more behavior than the sinusoidal wave. And the changing of critical level could be observed even with slight changes in the load vector.

A Study on Power Stability Improvement in the Inductive Coupled RFID Transponder System

  • Kim, Gi-Rae;Choi, Young-Kyu
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.2
    • /
    • pp.150-154
    • /
    • 2007
  • Transponders of RFID system are classified as active or passive depending on the type of power supply they use. In passive transponders the data carrier has to obtain its power from the induced voltage. The induced voltage is converted into direct current using a low loss bridge rectifier and then smoothed. In practice, the induced voltage in the transponder coil is variable according to the coupling coefficient k and the load resistance ($R_L$). Therefore, the rectified voltage is unstable and the transponder of RFID is unstable sometimes. In this paper, a voltage-dependent shunt resistor ($R_s$) circuits are designed and inserted in parallel with the load resistance of RFID transponder in order to improve the stability of power.

The bootstrap VQ model for automatic speaker recognition system (VQ 방식의 화자인식 시스템 성능 향상을 위한 부쓰트랩 방식 적용)

  • Kyung YounJeong;Lee Jin-Ick;Lee Hwang-Soo
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.39-42
    • /
    • 2000
  • A bootstrap and aggregating (bagging) vector quantization (VQ) classifier is proposed for speaker recognition. This method obtains multiple training data sets by resampling the original training data set, and then integrates the corresponding multiple classifiers into a single classifier. Experiments involving a closed set, text-independent and speaker identification system are carried out using the TIMIT database. The proposed bagging VQ classifier shows considerably improved performance over the conventional VQ classifier.

  • PDF

Development of the Numerical Procedures for the Control of Linear Periodic Systems (선형 주기시스템의 제어 및 수치해석적 절차 수립에 관한 연구)

  • Jo, Jang-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.12
    • /
    • pp.121-128
    • /
    • 2000
  • The scope of this paper is focused to the systems which have the time period and they should be necessarily studied in the sense of stability and design method of controller to stabilize the orignal unstable systems. In general, the time periodic systems or the systems having same motions during certain time interval are easily found in rotating motion device, i.e., satellite or helicopter and widely used in factory automation systems. The characteristics of the selected dynamic systems are analyzed with the new stability concept and stabilization control method based on Lyapunov direct method. The new method from Lyapunov stability criteria which satisfies the energy convergence is studied with linear algebraic method. And the numerical procedures are developed with computational programming method to apply to the practical linear periodic systems. The results from this paper demonstrate the usefulness in analysis of the asymptotic stability and stabilization of the unstable linear periodic system by using the developed simulation procedures.

  • PDF

Characteristics of Friction Noise with Changes of the Natural Frequencies in the Reciprocating Motion (왕복운동에서의 고유주파수 변화에 따른 마찰소음 특성 연구)

  • Choi, Hoil;Kang, Jaeyoung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.4
    • /
    • pp.332-338
    • /
    • 2014
  • Experimental study is conducted for investigating the characteristics of friction-induced noise with respect to the variation of system geometry. In this study, a vertically fixed rod is in contact with the reciprocating plate which is controlled by the step motor. Friction noise is generated during the reciprocating motion due to the frictional contact between the plastic pin and the aluminum plate. The frequencies of the friction noise are changed when the height of the rod varies. However, it is found that the vibration modes involved in the friction noise are not changed. It implies that the unstable modes remain unstable regardless of the change of the system geometry, and thus, there are the certain mode shapes which are likely to produce friction noise.

Discrete-time learning control for robotic manipulators

  • Suzuki, Tatsuya;Yasue, Masanori;Okuma, Shigeru;Uchikawa, Yoshiki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.1069-1074
    • /
    • 1989
  • A discrete-time learning control for robotic manipulators is studied using its pulse transfer function. Firstly, discrete-time learning stability condition which is applicable to single-input two-outputs systems is derived. Secondly, stability of learning algorithm with position signal is studied. In this case, when sampling period is small, the algorithm is not stable because of an unstable zero of the system. Thirdly, stability of algorithm with position and velocity signals is studied. In this case, we can stabilize the learning control system which is unstable in learning with only position signal. Finally, simulation results on the trajectory control of robotic manipulators using the discrete-time learning control are shown. This simulation results agree well with the analytical ones.

  • PDF

Squeak Noise of Ceramic-on-ceramic Hip Joint using FEM (FEM을 이용한 세라믹-세라믹 고관절 마찰소음의 불안정성 해석에 관한 연구)

  • Nam, Jaehyun;Kang, Jaeyoung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.12
    • /
    • pp.1090-1095
    • /
    • 2013
  • This paper describes the FEM analysis for squeak problem of the ceramic-on-ceramic hip joint system. The onset of hip squeak is estimated by the positive real parts of the eigenvalues in the hip joint system. From the complex eigenvalue analysis, the unstable frequencies and the corresponding mode shapes are determined at the certain severe friction coefficients. It is found that some bending and torsion modes of the femoral stem can be unstable due to the mode-coupling mechanism. It also shows that the magnitude of the friction coefficient plays a key role on the occurrence of hip squeak.

Dynamic Robust Path-Following Using A Temporary Path Generator for Mobile Robots with Nonholonomic Constraints

  • Lee, Seunghee;Jongguk Yim;Park, Jong-Hyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.515-515
    • /
    • 2000
  • The performance of dynamic path following of a wheeled mobile robot with nonholonomic constraints has some drawbacks such as the influence of the initial state. The drawbacks can be overcome by the temporary path generator and modified output. But with the previous input-output linearization method using them, it is difficult to tune the gains, and if there are some modeling errors, the low gain can make the system unstable. And if a high gain is used to overcome the model uncertainties, the control inputs are apt to be large so the system can be unstable. In this paper. an H$_{\infty}$ controller is designed to guarantee robustness to model parameter uncertainties and to consider the magnitude of control inputs. And the solution to Hamilton Jacobi (HJ) inequality, which is essential to H$_{\infty}$ control design, is obtained by nonlinear matrix inequality (NLMI).

  • PDF