• Title/Summary/Keyword: Unstable Region

Search Result 296, Processing Time 0.03 seconds

DYNAMICS ON AN INVARIANT SET OF A TWO-DIMENSIONAL AREA-PRESERVING PIECEWISE LINEAR MAP

  • Lee, Donggyu;Lee, Dongjin;Choi, Hyunje;Jo, Sungbae
    • East Asian mathematical journal
    • /
    • v.30 no.5
    • /
    • pp.583-597
    • /
    • 2014
  • In this paper, we study an area-preserving piecewise linear map with the feature of dangerous border collision bifurcations. Using this map, we study dynamical properties occurred in the invariant set, specially related to the boundary of KAM-tori, and the existence and stabilities of periodic orbits. The result shows that elliptic regions having periodic orbits and chaotic region can be divided by smooth curve, which is an unexpected result occurred in area preserving smooth dynamical systems.

The problem of stability and uniform sampling in the application of neural network to discrete-time dynamic systems

  • Eom, Tae-Dok;Kim, Sung-Woo;Park, kang-bark;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.119-122
    • /
    • 1995
  • Neural network has found wide applications in the system identification, modeling, and realization based on its function approximation capability. THe system governe dby nonlinear dynamics is hard to be identified by the neural network because there exist following difficulties. FIrst, the training samples obtained by the stae trajectory are apt to be nonuniform over the region of interest. Second, the system may becomje unstable while attempting to obtain the samples. This paper deals with these problems in discrete-time system and suggest effective solutions which provide stability and uniform sampliing by the virtue of robust control theory and heuristic algorithms.

  • PDF

A Design of the Mixed $H_2 / H_\infty$ Controller Using Genetic Algorithms (유전 알고리즘을 이용한 $H_2 / H_\infty$ 혼합 제어기 설계)

  • Lee, Jong-Sung;Kang, Ki-Won;Park, Ki-Heon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.4
    • /
    • pp.276-284
    • /
    • 2000
  • In this paper, the genetic algorithm is used to design a mixed H₂/ H/sub ∞/ controller Two kinds of controller forms, Youla's form and the general form, are considered to design a mixed H₂/ H/sub ∞/ controller. Efficient searching methods are sought to minimize the given H₂cost function under the H∞ constraint. It is verified by an example that the developed algorithm can provide stable results in the region where unstable results are shown by the conventional gradient method.

  • PDF

Experimental Study on Flow Patterns and Pressure Drop Characteristics of Ice Slurry In Small Size Pipe (1) (소구경 배관내 아이스슬러리의 유동형상 및 압력강하 특성에 관한 실험적 연구(1))

  • 이동원;윤찬일;윤응상
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.5
    • /
    • pp.385-390
    • /
    • 2002
  • To clarify the hydraulic characteristics of ice slurry which made from 6.5% ethylene glycol-water solution flowing through circular pipes of small diameter, experimental studies were performed. The flow pattern was observed and the pressure drop was measured in acrylic pipes with inner diameter of 24 mm. The results of flow visualization revealed that ice particles flowed along the top of pipes in the ranges of small ice fraction and low flow rate, while Ice particles diffused into the whole region of pipes flowed like a homogeneous flow for high flow rate and high ice fraction. An increase in frictional pressure drop was measured as the ice fraction increased in all pipes and unstable flow was observed for up-ward vertical pipe.

Design of Optimized Cascade Controller by Hierarchical Fair Competition-based Genetic Algorithms for Rotary Inverted Pendulum System (계층적 공정 경쟁 유전자 알고리즘을 이용한 회전형 역 진자 시스템의 최적 캐스케이드 제어기 설계)

  • Jung, Seung-Hyun;Jang, Han-Jong;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.104-106
    • /
    • 2007
  • In this paper, we propose an approach to design of optimized Cascade controller for Rotary Inverted Pendulum system using Hierarchical Fair Competition-based Genetic Algorithm(HFCGA). GAs may get trapped in a sub-optimal region of the search space thus becoming unable to find better quality solutions, especially for very large search space. The Parallel Genetic Algorithms(PGA) are developed with the aid of global search and retard premature convergence. HFCGA is a kind of multi-populations of PGA. In this paper, we design optimized Cascade controller by HFCGA for Rotary Inverted Pendulum system that is nonlinear and unstable. Cascade controller comprise two feedback loop, parameters of controller optimize using HFCGA. Then designed controller evaluate by apply to the real plant.

  • PDF

A Study on the Dynamic Characteristics of Truncated Cone Type Squeeze Film Damper Bearing and Rotor System (절단 원추형 Squeeze Film Damper 베어링과 회전축계의 동특성에 관한 연구)

  • 윤석철
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.1
    • /
    • pp.9-18
    • /
    • 1997
  • This paper is a study on the dynamic characteristics of truncated cone type squeeze film damper(SFD) bearing and rotor system. This model can alter the radial oil film gap which Is Important to the performance of rotor-bearing system and manufactured easily to change the shape concept of traditional circular type SFD bearing. In theoretical analysis, the oil film pressure distribution, the oil film force, the film damping coefficient and the eccentricity ratio, etc. were induced with regard to the film inertia effect. The film damping coefficients and optimum design parameters are calculated. When unbalance parameter U is greater than 0.2, the nonlinear vibration such as "Jump" phenomena appears in the vicinity of rotor critical speed. At this time, the increases of bearing parameter U, journal distance S, Reynolds number Re can control this unstable vibration. The experimental results show that SFD hearing and rotor system which are designed according to the design parameters in the stable region are operated stably in rotational speed 9,600rpm without nonsynchronous behavior.

  • PDF

Vibration Analysis of Pipes Considering Fluid Pulsation (유체맥동을 고려한 배관계의 진동해석)

  • Seo, Young-Soo;Jeong, Seok-Hyeon;Lee, Seong-Hyeon;Hong, Chin-Suk;Jeong, Weui-Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.10 s.115
    • /
    • pp.1050-1056
    • /
    • 2006
  • In this paper, a new method for the stability analysis of a pipe conveying fluid which pulsates periodically is presented. The finite element model is formulated liking into consideration of the effects of the fluid pulsating in a pipe. The damping and stiffness matrices in the finite element equation vary with time due to pulsating fluid. Coupled effects of several harmonic components in the velocity of fluid to a pipe is discussed. A new unstable region appears which will not appear in the stability analysis of single pulsating frequency. A method to directly estimate the forced response of pipe is also discussed. The results presented in this paper are verified by the time domain analysis.

A study on the dynamic characteristics of non-linear dynamic vibration absorber excited by harmonic ground motion (조화운동하는 기반상에서 작동하는 비선형 동흡진기의 동특성에 관한 연구)

  • 김광식;안찬우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.1
    • /
    • pp.131-136
    • /
    • 1988
  • This study is a research on the dynamic characteristics of non-linear dynamic vibration absorber in which harmonic motion is applied to the foundation of the main system. The amplitude ratio of the system with non-linear dynamic vibration absorber was obtained by harmonic balance methods and the unstable region was determined by stability analysis. As a result of study, the amplitude ratio decreases as mass ratio increases.

Identification of linearly unstable modes in the near-Earth current disruption

  • Mok, Chin-Ook;Ryu, Chang-Mo
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.44.1-44.1
    • /
    • 2009
  • Identification of wave characteristics during current disruption events in the near-Earth geomagnetic tail region (~ 10 RE) is important to understand the substorm onset mechanism. In this paper, linear stability analysis in the ion-cyclotron grequency range, considering temperature anisotropy and cross-field flow is presented. It is found that the ion-cyclotron drift waves propagating in a quasi-perpendicular direction with respect to the ambient magnetic field are characterized by low frequencies ($\omega$ < $0.5{\Omega}ci$), while quasi-parallel waves have frequencies close to the ion-cyclotron frequency ($\omega{\sim}{\Omega}ci$). This finding is consistent with the observation by THEMIS spacecraft of a current disruption event in which a similar high- and low-frequency band structure is also present [A. T. Y. Lui, et al., J. Geophys. Res. 113, A00C06 (2008)]. It is also found that the quasi-perpendicular mode is excited by the ion cross-field flow.

  • PDF

EFFECTS OF WINDS ON THE STABILITY OF A THIN DISK

  • LI, SHUANG-LIANG
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.603-604
    • /
    • 2015
  • Standard thin disk theory predicts that an inner disk region dominated by radiation pressure is thermally unstable. However, this kind of instability isn't detected in the observations of X-ray binaries. In this work, we revisit this issue by investigating the stability of a thin disk with magnetically driven winds. It is found that the disk winds can help to make a thin disk stable by taking away most of the energy released in the disk, resulting in a much cooler disk. The disk can always be stable even for a very weak initial field strength ${\beta}_{p,0}{\leq}400$ when ${\alpha}=0.05$ and $B{\phi}=10B_p$ are adopted.