• 제목/요약/키워드: Unstable Flame

검색결과 89건 처리시간 0.025초

기울어진 예혼합 평면화염의 안정성 (Stability of Inclined Premixed Planar Flames)

  • 이대근;김문언;신현동
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제29회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.97-106
    • /
    • 2004
  • Stability of laminar premixed planar flames inclined in gravitational field which generate vorticity is asymptotically examined. The flame structure is resolved by a large activation energy asymptotics and a long wave approximation. The coupling between hydrodynamics and diffusion processes is included and near-unity Lewis number is assumed. The results show that as the flame is more inclined from the horizontal plane it becomes more unstable due to not only the decrease of stabilizing effect of gravity but also the increase of destabilizing effect of rotational flow. The obtained dispersion relation involves the Prandtl number and shows the destabilizing effect of viscosity. The analysis predicts that the phase velocity of unstable flame wave depends on not only the flame angle but also the Lewis number. For relatively short wave disturbances, still much larger than flame thickness, the most unstable wavelength is nearly independent on the flame angle and the flame can be stabilized by gravity and diffusion mechanism.

  • PDF

기울어진 예혼합 평면화염의 안정성 (Stability of Inclined Premixed Planar Flames)

  • 이대근;김문언;신현동
    • 한국연소학회지
    • /
    • 제9권4호
    • /
    • pp.9-21
    • /
    • 2004
  • Stability of laminar premixed planar flames inclined in the gravitational field is asymptotically examined. The flame structure is resolved by a large activation energy asymptotics and a long wave approximation. The coupling between hydrodynamics and diffusion processes is included and near-unity Lewis number is assumed. The results show that as the flame is more inclined from the horizontal plane it becomes more unstable due to not only the decrease of stabilizing effect of gravity but also the increase of destabilizing effect of rotational flow. The obtained dispersion relation involves the Prandtl number and shows the destabilizing effect of viscosity. The analysis predicts that the phase velocity of unstable flame wave depends on not only the flame angle but also the Lewis number. For relatively short wave disturbances, still much larger than flame thickness, the most unstable wavelength is nearly independent on the flame angle and the flame can be stabilized by gravity and diffusion mechanism.

  • PDF

스월 난류연소기의 흡입공기온도, 스월세기에 따른 연소불안정 발생 메커니즘에 대한 연구 (A study on flame bifurcation due to inlet mixture temperature and swirl strength in a swirl turbulent combustor)

  • 김종찬;성홍계;유혁
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제29회 추계학술대회논문집
    • /
    • pp.377-380
    • /
    • 2007
  • 스월 난류연소기에서의 혼합기 유입온도와 스월세기에 따른 연소불안정 발생 메커니즘 알아보기 위하여 Large Eddy Simulation을 수행하였다. 스월각 45도 경우 연료공기 혼합기의 온도를 600K에서 660K으로 증가시켰을 경우 화염분기(Bifurcation)현상이 관찰되었고, 스월 강도가 변할 경우 온도와 관계없이 화염분기가 일어나거나 그렇지 않음을 확인하였다. 벽면근처의 혼합가스 유동속도와 화염속도간의 상관관계는 화염분기현상의 발생에 주요한 인자임을 확인하였다.

  • PDF

V-gutter 형 보염기를 장착한 모델 램제트 연소기의 화염 특성 및 연소 불안정 연구 (A Study on Flame Dynamics and Combustion Instability Stabilized with a V-gutter Type Flameholder in a model ramjet combustor)

  • 송진관;황정재;송재천;윤영빈
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년도 제31회 추계학술대회논문집
    • /
    • pp.447-448
    • /
    • 2008
  • The goal of this study is to find flame dynamic behavior using a transverse fuel injection in a model combustor, and is to investigate main causes of unstable combustion in a liquid-fueled combustor. For transverse fuel injection into air cross flow, spray result shows similar tendency with Wu et al.[1998] until spray arrives at flame-holder. However, passing through flame-holder, fuel inflow into recirculation region of flameholder is not sufficient so it makes large difference between shear flame and recirculation flame behind flameholder. In combustion tests, the stable flame shows a kind of shear flames and low peaks of dynamic pressure frequencies. On the other hand, unstable flame shows periodic detached flame in recirculation zone and a strong peak of dynamic pressure frequency. The instability frequency is highly affected by influx air velocity, air temperature, equivalence ratio and wake or vortex shedding frequency behind the flameholder.

  • PDF

성층화된 예혼합화염에 대한 희석제 첨가의 영향 (Fuel Dilution Effects for Stratified Premixed Flames)

  • 안태국;이원남
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2013년도 제46회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.73-76
    • /
    • 2013
  • The inert gas dilution effect for the stability of a stratified propane premixed flame has been experimentally studied. The addition of inert gases to a stratified premixed flame, which used to be very stable without dilution, makes a flame unstable. The lower equivalence ratio on the outer premixed flame and the lower fuel flow rate through the inner nozzle were observed to be the more stable conditions for the stratified premixed flame with nitrogen or argon dilution. It has been interpreted with the flame structure change such as shift of stoichiometric ratio region in a flame.

  • PDF

미소중력 환경내의 벽면 근방 확산 화염 특성에 관한 수치 해석 (Numerical Simulation on Characteristics of Laminar Diffusion Flame Placed Near Wall in Microgravity Environment)

  • 최재혁;후지타 오사무
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권1호
    • /
    • pp.140-149
    • /
    • 2006
  • Characteristics of a laminar diffusion flame placed near wall in microgravity have been numerically analyzed in a two-dimension. The fuel for the flame is $C_2H_4$. The flame is initiated by imposing a high temperature ignition source. The flow field, temperature field, and flame shape in microgravity diffusion flame are detailed. Especially, effects of surrounding air velocity and fuel injection velocity on the microgravity diffusion flame have been discussed accounting for standoff distance. And, the effect of curvature rate has been also studied. The results showed that velocities in a diffusion flame were overshoot because of volumetric expansion and distribution of temperature showed regularity by free-buoyancy This means that the diffusion flame in microgravity is very stable, while the flame in normal gravity is not regular and unstable due to buoyancy. Standoff distance decreases with increase in surrounding air velocity and with decrease in fuel injection velocity. With increasing curvature rate, the position of reaction rate moves away the wall.

Characterization of the Effect of the Inlet Operating Conditions on the Performance of Lean Premixed Gas Turbine Combustors

  • Samperio, J.L.;Santavicca, D.A.;Lee, J.G.
    • 한국연소학회지
    • /
    • 제9권3호
    • /
    • pp.10-18
    • /
    • 2004
  • An experimental study of the effect of operating conditions on the behavior of a lean premixed laboratory combustor operating on natural gas has been conducted. Measurements were made characterizing the pressure fluctuations in the combustor and the flame structure over a range of inlet temperatures, inlet velocities and equivalence ratios. In addition the fuel distribution at the inlet to the combustor was varied such that it was an independent parameter in the experiment. Inlet temperature, inlet velocity and equivalence ratio were all found to have an effect on the stability characteristics of the combustor. The nature of this effect, however, depended on the fuel distribution. For example, with one fuel distribution the combustor would become unstable when the temperature was increased, whereas with a different fuel distribution the combustor would become unstable when the temperature was decreased. Similarly, the operating conditions had an effect on the flame structure. For example the intensity-weighted center of mass of the flame was found to move closer to the center body as either the temperature or equivalence ratio increased. It was interesting and somewhat surprising to note, however, that as the location of the center of mass changed with operating conditions it did so by moving along a line of constant flame angle.

  • PDF

반경방향 다중 채널 내 예혼합 화염의 안정화 특성과 맥동 불안정성에 관한 실험적 연구 (An Experimental Study on the Flame Localization Characteristics and Pulsating Instability in a Radial Multi-channel)

  • 이대근;고창복
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2013년도 제46회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.41-43
    • /
    • 2013
  • In order to simulate and visually observe combustion phenomena in cylindrical radial-flow porous inert media, a radial multi-channel burner, made of transparent quartz plates, was fabricated. Flame stabilization characteristics and its pulsating instability in the burner were experimentally investigated with respect to various mixture flow rates and equivalence ratio. As a result, five different flame behaviors, such as stable flame, pulsating instability, sudden extinction, blowout and unstable extinction, were observed. Mean radial position of circularly arranged multi-flame and its averaged burning velocity were measured and then compared to the freely propagating flame. The multi-flame pulsation frequency is about several tens of Hz and it is supposed to be generated by the heat diffusion enhancement to cold pre-mixture by the intensive gas-solid interaction.

  • PDF

층류확산화염의 불안정성에 대한 매연생성 특성의 역할 (Soot Formation Characteristics on the Instability of Laminar Diffusion Flames)

  • 남연우;이원남
    • 한국연소학회지
    • /
    • 제15권3호
    • /
    • pp.74-81
    • /
    • 2010
  • In this study, soot formation characteristics on the instability of laminar diffusion flames were investigated experimentally using a concentric co-flow burner. When a small amount of air was supplied through an inner nozzle, a stable propane laminar diffusion flame became unstable and began to oscillate mainly due to the dilution effect. The increase of air flow rate transformed an oscillating non-sooting flame into a stable nonsooting flame. When the air flow rate was continuously increased an inner flame was formed and the flame was changed to an oscillating sooting flame, an oscillating non-sooting flame and finally a stable non-sooting hollow flame. When the air flow rate was decreased, a non-sooting hollow flame was eventually changed back to a stable non-sooting flame. The presence of an inner flame, however, altered the soot formation characteristics of a flame. More soot production was observed with the presence of an inner flame. The increased or decreased soot formation/oxidation rates, the radiation heat loss, and the heating effect of inner flames are most likely to be responsible for the observed instability of laminar diffusion flames.

모형 가스터빈 연소기내 연소불안정성에 대한 실험적 연구 (An Experimental Study on Combustion Instability Mechanism in a Dump Gas Turbine Combustor)

  • 이연주;이종호;전충환;장영준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.853-858
    • /
    • 2001
  • The knowledge of flame structure is essential for control of combustion instability phenomena. Some results of an experimental study on mechanism of naturally occurring combustion oscillations with a single dominant frequency are presented. Tests were conducted in a laboratory-scale dump combustor at atmospheric pressure. Sound level meter was used to track the pressure wave inside the combustor. The observed instability was a longitudinal mode with a frequency of $\sim341.8Hz$. Instability map was obtained at the condition of inlet temperature of $360^{\circ}C$, mean velocities of $8.5\sim10.8m/s$ and well premixed mixture. It showed that combustion instability was susceptible to occur in the lean conditions. In this study, unstable flame was observed from stoichiometric to 0.7 in overall equivalence ratio. At selected unstable conditions, phase-resolved OH chemiluminescence images were captured to investigate flame structure with various mean velocities. As mean velocity is increased, the flame grows and global heat release was changed. Due to these effects, combustion instability can be maintained at more lean air-fuel ratio. Also, these results give an insight to the controlling mechanism for an increasing heat release at maximum pressure.

  • PDF