Numerical Simulation on Characteristics of Laminar Diffusion Flame Placed Near Wall in Microgravity Environment

미소중력 환경내의 벽면 근방 확산 화염 특성에 관한 수치 해석

  • 최재혁 (한국원자력연구소 원자력수소 사업추진반) ;
  • 후지타 오사무 (일본 북해도대학 기계우주전공분야)
  • Published : 2006.01.01

Abstract

Characteristics of a laminar diffusion flame placed near wall in microgravity have been numerically analyzed in a two-dimension. The fuel for the flame is $C_2H_4$. The flame is initiated by imposing a high temperature ignition source. The flow field, temperature field, and flame shape in microgravity diffusion flame are detailed. Especially, effects of surrounding air velocity and fuel injection velocity on the microgravity diffusion flame have been discussed accounting for standoff distance. And, the effect of curvature rate has been also studied. The results showed that velocities in a diffusion flame were overshoot because of volumetric expansion and distribution of temperature showed regularity by free-buoyancy This means that the diffusion flame in microgravity is very stable, while the flame in normal gravity is not regular and unstable due to buoyancy. Standoff distance decreases with increase in surrounding air velocity and with decrease in fuel injection velocity. With increasing curvature rate, the position of reaction rate moves away the wall.

Keywords

References

  1. Seegeev, G. T., Smolsky, B. M., and Tar asevich, L.I., Int. J. Het and Mass Transfer 13, pp. 1215-1224, 1970 https://doi.org/10.1016/0017-9310(70)90010-4
  2. Hirano, T., Iwai, K., and Kanno, Y.,Astronaut, Acta, 17-4/5, pp. 811-818, 1972
  3. Hirano, T. and Kanno, Y., 'Aerodynamic and thermal structure of the laminar boundary layer over a flat plate with a diffusion flame', Proc. 14th Proc. Combust. Inst., pp. 391-398, 1973
  4. Hirano, T., Noreikis, S., and Waterman, T., 'Measured velocity and temperature profiles near flames spreading over a thin combustible solid', Combust. Flame 23:83, 1974 https://doi.org/10.1016/S0010-2180(74)80029-5
  5. Hirano, T., and Kinoshita, M., 'Gas vel ocity and temperature profiles of a diffusion flame stabilized in the stream over liquid fuel', 15th Proc. Combust. Inst., p. 379, 1975
  6. Mao.C, P., Komada, H., and Fernandez-pello, A. C., 'Convective structure of a diffusion flame over a flat combustible surface', Combustion and Flame, 57, (1984), pp, 209-236 https://doi.org/10.1016/0010-2180(84)90058-0
  7. Ramachandra, A., and Raghunandan, B. N., 'Buoyant effects on the characteristics of a laminar boundary layer diffusion flame in a confined flow', Combust. Flame, 58, pp. 191-196, 1984 https://doi.org/10.1016/0010-2180(84)90092-0
  8. 植田利久, 溝本雅彦, '層流平板境界層擴散火炎の流體力學的構造', 日本機械學會論文集(B編),52, pp. 3787-3793, 1985
  9. 植田利久, 大島 朗, 齊藤直樹, 溝本雅彦., '層流平板境界層擴散火炎の流體力學的構造(第2報, 實驗的檢討)', 日本機械學會論文集(B編), 56, pp. 3501-3507, 1990
  10. Ueda, T. and Mizomoto, M., Computational Mechanics, Springer-Verlag 5, pp. 263-272, 1989
  11. 劉春亮, 鈴木鐸士, 川又正昭, '層流境界層に形成される擴散火炎の構造と特性の數 値解析', 日本機械學會論文集(B編),66, pp. 22-29, 2000
  12. 劉春亮, 鈴木鐸士, 川又正昭, '層流境界層に形成される擴散火炎の構造と特性の數値解析(第 2 報, 燃料供給條件および固體域傳熱特性の影響)', 日本機械學會論文集(B編),67, pp. 238-246, 2001
  13. Choi, J. H., Fujita, O., Tsuiki, T., 'Effects of Oxygen Concentration on Soot Distribution and Deposition Characteristics in Laminar Diffusion Flames near Solid Walls in Microgravity' ,MEC 2004, pp. 71-76, 2004
  14. Williams, F. A., Combustion theory, Second Edition, The Benjamin/ Cummings publishing Company, 1985
  15. Westbrook, C. K., 'Simplified Reaction Mechanisms for oxidation of hydrocarbon fuels in flame', Combust. Sci.Tech., 27, pp. 31-43, 1981 https://doi.org/10.1080/00102208108946970
  16. Najm, H. N. and Wyckoff, P. S., combust Flame 110:92-112, 1992 https://doi.org/10.1016/S0010-2180(97)89577-6
  17. Kim, J., Moin, P., 'Application of a fractional-step method to incompressible Navier-Stokes equations', J.Computational Physics, 59, pp. 308-323, 1985 https://doi.org/10.1016/0021-9991(85)90148-2
  18. Weaseling, P., 'An Introduction to multi grid methods', John Wiley & Sons Ltd., 1992
  19. Mahalingam, S., Cantwell, B. J., and Ferziger, J. H., 'Non-premixed Combustion: Full Numerical Simulation of a Coflowing axisymmetric Jet, Inviscid and Viscous Stability Analysis, report TF-43, Thermoscience Division, Stanford University', Stanford, California, 1989
  20. Kee, R. J., Rupley, F. M., Meeks, E., and Miller, J. A., 'CHEMKIN-III: A FORTRAN Chemical Kinetics Package for the Analysis of Gas-Phase Chemical and Plasma Kinetics', SAND96-8216, Sandia National Laboratories, Livermore, CA. 1996.T. Kashiwagi, H. Nambu, Combust. Flame, 88, pp. 345-368, 1992
  21. Kee, R. J., Warnatz. J., and Miller, J. A., 'A FORTRAN Computer Code Pakage for the Evaluation of Gas Phase Viscosities, Conductivities and Diffusion Coefficients', Sandia report SAND83-8209
  22. Suzuki, T., Kawamata, M., Matsu¬moto, K., and Hirano, T., 'Fire Safety Science', Proc. 3rd Symp., pp. 227-236, 1991
  23. Takahashi, F. and Katta, V. R., Centra States Section/ The Combustion Institute Meeting, 1997
  24. 西澤勝弘, '宇宙船內火災安全性向上ため導 線被覆材上燃燒擴がりに關する硏究', 博士 論文, 北海道大學, 2004