• 제목/요약/키워드: Unmanned agricultural machinery

검색결과 56건 처리시간 0.026초

자율 주행 트랙터 경운경로생성 프로그램 개발 (Development of Working Path Formation Program for Autonomous Tractor System)

  • 서일환;서동현;김기대
    • 농업과학연구
    • /
    • 제37권1호
    • /
    • pp.113-121
    • /
    • 2010
  • Land consolidation ratio for rice paddy fields reached to 64.7% as of 2008 in Korea, and this also accelerated automation of field machinery. Especially, research on autonomous tractors has been continuously conducted. Tillage is one of the labor-, energy-, and time-consuming field operations. Most important requirements for autonomous tractors would be travelling path planning and electronic system to control the tractor to follow the path. The instruction of computer was required to conduct the tillage operation in field with unmanned traveling tractor. This instruction was coincidently used in the control of the traveling path and the motion of tractor. The objectives of the study were 1) to characterize and model tillage operating sequence, turning pattern, and 2) to develop tillage path formation programs for autonomous tractor and evaluate the performance.

Analysis of trends on patents for unmanned technology used in agriculture

  • Lee, Choong-Han;Kim, Wan-Soo;Choi, Chang-Hyun;Noh, Hyun-Seok;Hong, Soon-Jung
    • 농업과학연구
    • /
    • 제45권1호
    • /
    • pp.114-119
    • /
    • 2018
  • This study analyzed the trends of patents for unmanned technology used in agriculture. The target countries for this survey of patent data were Korea, the USA and Japan as well as the countries in Europe. The indices used in this study to analyze the patents were the CPP (Cites Per Patent), PII (Patent Impact Index), and PFS (Patent Family Size). The total effective patents for unmanned technology used in agriculture were 1,080 cases. The number of patents in the USA, Japan, Europe, and Korea were 541, 326, 128 and 85 cases, respectively. Among the total effective patents, the evaluation scores for selected important patents were calculated by applying commonly used weights to each index, and the top 10 patents were selected as important patents. The results showed that all the top ten patents are owned by the United States and that the United States is an advanced country in the field of unmanned technology used in agriculture. The evaluation score of the important patents using the existing method was biased toward the PII index among the three patent evaluation standards, and the effects of the number of claims and the PFS were relatively small. Therefore, a reliable patent analysis in the field of unmanned technology used in agriculture needs to reflect the overall evaluation factors taking into consideration the scope of the evaluation factors.

Performance Comparison of Two Airfoil Rotor Designs for an Agricultural Unmanned Helicopter

  • Koo, Young-Mo
    • Journal of Biosystems Engineering
    • /
    • 제37권1호
    • /
    • pp.1-10
    • /
    • 2012
  • Purpose: The most important element of an agricultural helicopter is the rotor blade realizing lift force. In order to improve the performance of the rotor blades, two types (KA152313 and KB203611) of airfoils were designed and compared. Methods: The nose shape of the KB203611 airfoil was 'drooped' and 'sharp' compared to the leading edge of the KA152313 airfoil. The performance of the experimental airfoils was simulated using CFD-ACE program, and lifts were measured in situ using the 'AgroHeli-4G', a prototype helicopter. Results: Simulated lifts of the blade with the KA152313 airfoil showed proper values for a wide range of angles of attack between $14^{\circ}{\sim}18^{\circ}$, while the simulated lift of the KB203611 blade exhibited maximum values near $13^{\circ}{\sim}14^{\circ}$. In the lift measurements, the range of operable angles of attack was a collective pitch angle at the grip (GP) of $12^{\circ}{\sim}18^{\circ}$ for the KA152313 blade. On the other hand, the range of angles of attack for the KB203611 blade was a GP of $12^{\circ}{\sim}14^{\circ}$. Conclusions: The blade of KA152313 performed well over a wide range of AoAs and the blade of KB203611 performed better at low AoAs. In this study, a variative airfoil blade, gradually emerging from grip to tip using the two different airfoils, was suggested.

소형 무인헬기를 이용한 항공방제기술 (IV) -로터양력의 CFD시뮬레이션 - (Aerial Application using a Small RF Controlled Helicopter (IV) - CFD Simulation of Rotor Lift -)

  • 석태수;구영모;손창현
    • Journal of Biosystems Engineering
    • /
    • 제31권4호
    • /
    • pp.342-348
    • /
    • 2006
  • Aerial application using an unmanned agricultural helicopter became necessary for both labor saving and timely spraying. In the previous paper, a rotor system was developed and lift capability was evaluated. The experimental results were compared with simulated predictions using the CFD-ACE program. From the simulation, the relative velocity on the top surface of the blade airfoil increased, resulting in the pressure drop. The CFD analyses were revealed that a drag resistance on the leading edge of the airfoil, a wake at the trailing edge, and a positive pressure underneath the bottom surface were observed. As the results of the simulation, total lifts of 56.8, 74.4 and $95.0kg_f$ were obtained at the 6, 8 and $10^{\circ}$ of AAT (angle of attack), respectively. The simulation results agreed reasonably up to $10^{\circ}$ of AAT. However, at a greater AAT $(<12^{\circ})$ the simulated total lift continuously increased to $105kg_f$, comparing with a decreasing experimental total lift due to the lack of engine power. At a stiff angle of $18^{\circ}$ AAT, a wake was observed at the trailing edge of the airfoil. A rated operating condition determined from the previous paper was also verified through the simulation.

드론 방제의 최적화를 위한 딥러닝 기반의 밀도맵 추정 (Density map estimation based on deep-learning for pest control drone optimization)

  • 성백겸;한웅철;유승화;이춘구;강영호;우현호;이헌석;이대현
    • 드라이브 ㆍ 컨트롤
    • /
    • 제21권2호
    • /
    • pp.53-64
    • /
    • 2024
  • Global population growth has resulted in an increased demand for food production. Simultaneously, aging rural communities have led to a decrease in the workforce, thereby increasing the demand for automation in agriculture. Drones are particularly useful for unmanned pest control fields. However, the current method of uniform spraying leads to environmental damage due to overuse of pesticides and drift by wind. To address this issue, it is necessary to enhance spraying performance through precise performance evaluation. Therefore, as a foundational study aimed at optimizing drone-based pest control technologies, this research evaluated water-sensitive paper (WSP) via density map estimation using convolutional neural networks (CNN) with a encoder-decoder structure. To achieve more accurate estimation, this study implemented multi-task learning, incorporating an additional classifier for image segmentation alongside the density map estimation classifier. The proposed model in this study resulted in a R-squared (R2) of 0.976 for coverage area in the evaluation data set, demonstrating satisfactory performance in evaluating WSP at various density levels. Further research is needed to improve the accuracy of spray result estimations and develop a real-time assessment technology in the field.

무인항공 변량방제 시스템의 살포 균일도 분석 (Uniformity Analysis of Unmanned Aerial Application with Variable Rate Spray System)

  • 구영모;배영환
    • 농업생명과학연구
    • /
    • 제52권6호
    • /
    • pp.111-125
    • /
    • 2018
  • 본 연구에서는 변량방제기술을 적용한 농용 회전익기를 이용하여 살포한 입자의 구간비행 상태에서의 거리별 살포 패턴을 측정함으로써 무인 항공방제의 농약 부착률과 입자경의 분포 균일도를 평가하였다. 비행을 등속으로 유지하는 안내비행과 자동비행 모드에서 유효살포폭 3.6m로 인접비행 구간과 살포폭이 일부 중첩된 피복률에 대한 가로방향 분포의 변이계수는 30% 정도를 보였고, 비행방향 진로위치에 대한 피복률의 변이계수는 10% 미만으로 매우 균등한 것으로 평가되었다. 따라서 살포작업시 기체의 지면속도(ground speed)의 변이를 보상하는 변량살포기술은 균일도 측면에서 우수한 것으로 판명되었으며, 또한 입자경의 분포에 있어서 체적중위직경(VMD)과 개체중위직경(NMD) 모두 항공방제에 적절한 크기와 균일한 분포를 보였다. 따라서 농용 회전익기를 이용하여 소필지의 항공방제작업을 무인화 하는데 있어, 변량방제장치를 적용함으로써 소규모 필지의 균일 정밀방제를 도모하고자 하였다.

무인 스피드스프레이어의 개발 (II) -화상처리를 이용한 주행방향 제어 알고리즘- (Development of Unmaned Speedsprayer (II) - Guidance Control Using Image Processing -)

  • 장익주;김태한;엄순형
    • Journal of Biosystems Engineering
    • /
    • 제23권3호
    • /
    • pp.291-304
    • /
    • 1998
  • A control algorithm fir the unmanned vehicles was developed using image information received through a CCD camera that acquires more powerful information over the wide range of wave-length comparing with other sensors and was applied to a speed-sprayer. The algorithm consisted of straight mode for passing along with middle of two tree-rows and turning mode for changing from a row to another row. In case of turning mode, two marks of colored papers were employed to indicate turning point and to decide turning direction for various orchard situations. The method of analysis and image would be differed according to camera's tilt-angle and position that is set on the speed-sprayer. Hence, it analyzed the point of difference by making camera's up and downward tilt-angle.

  • PDF

무인 스피드 스프레이어의 개발(I) -원격제어 및 유도케이블 시스템- (Development of Unmanned Speed Sprayer(I) -Remote Control and Induction Cable System-)

  • 장익주;김태한;조명동
    • Journal of Biosystems Engineering
    • /
    • 제20권3호
    • /
    • pp.226-235
    • /
    • 1995
  • 과수원 방제 작업 시 인체에 해로운 농약으로부터 운전자를 보호하고 노동력 및 농약의 절감, 환경오염의 방지 등의 효과를 꾀하기 위하여 무선 전파 리모콘을 이용한 무인 스피드 스프레이어의 원격제어 시스템을 개발함과 동시에 유도케이블식 주행유도 장치에 의한 자율주행 무인스피드 스프레이어를 개발하였다. 무인 스피드 스프레이어는 원격조종 시스템, 유도케이블 시스템, 장해물 검출장치, 제어 액튜에이터 등으로 구성되어 있고 원격조종 및 자율주행이 가능한 시스템이다. 무인화 한 스피드 스프레이어의 특징은 다음과 같다. 1) 무선 전파 리모콘과 유도 케이블에 의한 주행 유도장치를 개발하여 스피드 스프레이어에 장착한 결과 리모콘 조작방식과 주행 유도방식 모두 가능하였다. 2) 원격 조종은 주행 (전진, 후진), 조향, 3방향의 노즐 및 팬, 분무기, 주행정지 등 16종류의 조작이 가능하다. 3) 농업용 리모콘으로는 FSK방식보다 전송에러가 적은 DTMF방식이 우수하였으며, 농업용 특정 소전력 무선국이 필요하다고 생각된다. 4) 5개의 저임피던스 검출코일과 윈도우 컴퍼레이터 회로로 구성된 디지털식 케이블 유도 시스템은 2개의 검출코일에 유기 된 상대적 전압치로서 궤도를 수정하는 아날로그 검출방식보다 주행 성능이 우수하였다.

  • PDF

수직 다관절 사과수확로봇의 매니퓰레이터 개발 (I) -설계.제작- (Development of Manipulator for Vertically Moving Multi-Joint Apple Harvesting Robot(I) -Design.Manusacturing-)

  • 장익주
    • Journal of Biosystems Engineering
    • /
    • 제25권5호
    • /
    • pp.399-408
    • /
    • 2000
  • This study is final focused on developing fruit harvesting robot can distinguish fruit type and status accurately. Multi-joint robot is able to discriminate tree shape and select mature fruit by image processing. The multi-joint robot consists of (a) rotating base, (b)turning first joint-arm, (c)rotating and turning second joint-arm, (d)rotating and turning third joint-arm, (e)rotating and turning last joint and (f)picker hand. The operational ranges of the robot are: horizontal 860~2,220mm, vertical 1,440~2,260mm, 270 degrees’rotation angle, 90 or 270 degrees’turning angle. The robot weighs 330kg. The multi-joint robot was designed in high accuracy and efficiency by getting as close as the movements of human arms and waist.

  • PDF

Development of a real-time crop recognition system using a stereo camera

  • Baek, Seung-Min;Kim, Wan-Soo;Kim, Yong-Joo;Chung, Sun-Ok;Nam, Kyu-Chul;Lee, Dae Hyun
    • 농업과학연구
    • /
    • 제47권2호
    • /
    • pp.315-326
    • /
    • 2020
  • In this study, a real-time crop recognition system was developed for an unmanned farm machine for upland farming. The crop recognition system was developed based on a stereo camera, and an image processing framework was proposed that consists of disparity matching, localization of crop area, and estimation of crop height with coordinate transformations. The performance was evaluated by attaching the crop recognition system to a tractor for five representative crops (cabbage, potato, sesame, radish, and soybean). The test condition was set at 3 levels of distances to the crop (100, 150, and 200 cm) and 5 levels of camera height (42, 44, 46, 48, and 50 cm). The mean relative error (MRE) was used to compare the height between the measured and estimated results. As a result, the MRE of Chinese cabbage was the lowest at 1.70%, and the MRE of soybean was the highest at 4.97%. It is considered that the MRE of the crop which has more similar distribution lower. the results showed that all crop height was estimated with less than 5% MRE. The developed crop recognition system can be applied to various agricultural machinery which enhances the accuracy of crop detection and its performance in various illumination conditions.