• Title/Summary/Keyword: Unmanned aerial vehicle, UAV

Search Result 794, Processing Time 0.027 seconds

Accuracy Evaluation of Open-air Compost Volume Calculation Using Unmanned Aerial Vehicle (무인항공기를 이용한 야적퇴비 적재량 산정 정확도 평가)

  • Kim, Heung-Min;Bak, Su-Ho;Yoon, Hong-Joo;Jang, Seon-Woong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.3
    • /
    • pp.541-550
    • /
    • 2021
  • While open-air compost has value as a source of nutrients for crops in agricultural land, it acts as a pollution that adversely affects the environment during rainfall, and management is required. In this study, it was intended to analyze the accuracy of calculating open-air compost volume using fixed-wing UAV (unmanned aerial vehicle) capable of acquiring a wide range of images and automatic path flights and to identify the possibility of utilization. In order to evaluate the accuracy of calculating the three open-air compost volume, ground LiDAR surveys and precision surveys using a rotary UAV were performed. and compared with the open-air compost volume acquired through a fixed-wing UAV. As a result of comparing the calculation of open-air compost volume based on the ground LiDAR, the error rate of the rotary-wing was estimated to be ±5%, and the error rate of fixed-wing was -15 ~ -4%. one of three open-air compost volume calculated by fixed-wing was underestimated as about -15 %, but the deviation of the open-air compost volume was 2.9 m3, which was not significant. In addition, as a result of periodic monitoring of open-air compost using fixed-wing UAV, changes in the volume of open-air compost with time could be confirmed. These results suggested that efficient open-air compost monitoring and non-point pollutants in agricultural for a wide range using fixed-wing UAV is possible.

UAV Utilization for Efficient Estimation of Earthwork Volume Based on DEM

  • Seong, Jonghyeun;Cho, Sun Il;Xu, Chunxu;Yun, Hee Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.5
    • /
    • pp.279-288
    • /
    • 2021
  • In the era of the 4th industrial revolution, smart construction, in which new technologies such as UAV (Unmanned Aerial Vehicle) are fused, is attracting attention in the construction field. However, the method of estimating earthwork volume using DEM generated by UAV survey according to practical regulations such as construction design guidelines or standard product counting is not officially recognized and needs to be improved. In this study, different types of UAV were measured and DEM was obtained using this data. The DEM (Digital Elevation Model) thus obtained was analyzed for changes in the amount of earthworks according to the size of the GSD (Ground Sample Distance). In addition, the amount of earthwork by DEM and the amount of earthwork by existing design drawings were compared and analyzed. As a result of the study, it was suggested that images with a GSD of 5cm or less are effective to generate a high-quality DEM. Next, as a result of comparing the earthwork volume calculation method using DEM and the earthwork volume based on the existing 2D design drawings, a difference of about 1% was shown. In addition, when the design earthwork amount calculated by the double-section averaging method was compared with the designed earthwork amount using DEM data by UAV survey, a difference of about 1% was found. Therefore, it is suggested that the method of calculating the amount of earthworks using UAV is an efficient method that can replace the existing method.

Analysis of Building Object Detection Based on the YOLO Neural Network Using UAV Images (YOLO 신경망 기반의 UAV 영상을 이용한 건물 객체 탐지 분석)

  • Kim, June Seok;Hong, Il Young
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.381-392
    • /
    • 2021
  • In this study, we perform deep learning-based object detection analysis on eight types of buildings defined by the digital map topography standard code, leveraging images taken with UAV (Unmanned Aerial Vehicle). Image labeling was done for 509 images taken by UAVs and the YOLO (You Only Look Once) v5 model was applied to proceed with learning and inference. For experiments and analysis, data were analyzed by applying an open source-based analysis platform and algorithm, and as a result of the analysis, building objects were detected with a prediction probability of 88% to 98%. In addition, the learning method and model construction method necessary for the high accuracy of building object detection in the process of constructing and repetitive learning of training data were analyzed, and a method of applying the learned model to other images was sought. Through this study, a model in which high-efficiency deep neural networks and spatial information data are fused will be proposed, and the fusion of spatial information data and deep learning technology will provide a lot of help in improving the efficiency, analysis and prediction of spatial information data construction in the future.

A New Design of Privacy Preserving Authentication Protocol in a Mobile Sink UAV Setting (Mobile Sink UAV 환경에서 프라이버시를 보장하는 새로운 인증 프로토콜 설계)

  • Oh, Sang Yun;Jeong, Jae Yeol;Jeong, Ik Rae;Byun, Jin Wook
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.6
    • /
    • pp.1247-1260
    • /
    • 2021
  • For more efficient energy management of nodes in wireless sensor networks, research has been conducted on mobile sink nodes that deliver data from sensor nodes to server recently. UAV (Unmanned Aerial vehicle) is used as a representative mobile sink node. Also, most studies on UAV propose algorithms for calculating optimal paths and have produced rapid advances in the IoD (Internet of Drones) environment. At the same time, some papers proposed mutual authentication and secure key exchange considering nature of the IoD, which requires efficient creation of multiple nodes and session keys in security perspective. However, most papers that proposed secure communication in mobile sink nodes did not protect end-to-end data privacy. Therefore, in this paper, we propose integrated security model that authentication between mobile sink nodes and sensor nodes to securely relay sensor data to base stations. Also, we show informal security analysis that our scheme is secure from various known attacks. Finally, we compare communication overhead with other key exchange schemes previously proposed.

Analysis of Time Series Changes in the Surrounding Environment of Rural Local Resources Using Aerial Photography and UAV - Focousing on Gyeolseong-myeon, Hongseong-gun - (항공사진과 UAV를 이용한 농촌지역자원 주변환경의 시계열 변화 분석 - 충청남도 홍성군 결성면을 중심으로 -)

  • An, Phil-Gyun;Eom, Seong-Jun;Kim, Yong-Gyun;Cho, Han-Sol;Kim, Sang-Bum
    • Journal of Korean Society of Rural Planning
    • /
    • v.27 no.4
    • /
    • pp.55-70
    • /
    • 2021
  • In this study, in the field of remote sensing, where the scope of application is rapidly expanding to fields such as land monitoring, disaster prediction, facility safety inspection, and maintenance of cultural properties, monitoring of rural space and surrounding environment using UAV is utilized. It was carried out to verify the possibility, and the following main results were derived. First, the aerial image taken with an unmanned aerial vehicle had a much higher image size and spatial resolution than the aerial image provided by the National Geographic Information Service. It was suitable for analysis due to its high accuracy. Second, the more the number of photographed photos and the more complex the terrain features, the more the point cloud included in the aerial image taken with the UAV was extracted. As the amount of point cloud increases, accurate 3D mapping is possible, For accurate 3D mapping, it is judged that a point cloud acquisition method for difficult-to-photograph parts in the air is required. Third, 3D mapping technology using point cloud is effective for monitoring rural space and rural resources because it enables observation and comparison of parts that cannot be read from general aerial images. Fourth, the digital elevation model(DEM) produced with aerial image taken with an UAV can visually express the altitude and shape of the topography of the study site, so it can be used as data to predict the effects of topographical changes due to changes in rural space. Therefore, it is possible to utilize various results using the data included in the aerial image taken by the UAV. In this study, the superiority of images acquired by UAV was verified by comparison with existing images, and the effect of 3D mapping on rural space monitoring was visually analyzed. If various types of spatial data such as GIS analysis and topographic map production are collected and utilized using data that can be acquired by unmanned aerial vehicles, it is expected to be used as basic data for rural planning to maintain and preserve the rural environment.

Design and Implementation of UAV System for Autonomous Tracking

  • Cho, Eunsung;Ryoo, Intae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.2
    • /
    • pp.829-842
    • /
    • 2018
  • Unmanned Aerial Vehicle (UAV) is diversely utilized in our lives such as daily hobbies, specialized video image taking and disaster prevention activities. New ways of UAV application have been explored recently such as UAV-based delivery. However, most UAV systems are being utilized in a passive form such as real-time video image monitoring, filmed image ground analysis and storage. For more proactive UAV utilization, there should be higher-performance UAV and large-capacity memory than those presently utilized. Against this backdrop, this study described the general matters on proactive software platform and high-performance UAV hardware for real-time target tracking; implemented research on its design and implementation, and described its implementation method. Moreover, in its established platform, this study measured and analyzed the core-specific CPU consumption.

Ground Risk Model Development for Low Altitude UAV Traffic Management (저고도 무인기 교통관리를 위한 지상 충돌 위험 모델 개발)

  • Kim, Youn-sil
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.6
    • /
    • pp.471-478
    • /
    • 2020
  • In this paper, we develop the ground risk model of unmanned aerial vehicle (UAV) operation to quantify the ground risk when the UAV falls to the ground during the intended operation in case of UAV failure. The ground risk is computed by using the UAV failure probability, the probability of impact a person when UAV falls to the ground, the probability of fatality when UAV strikes the person. We mathematically derive each probability to evaluate the ground risk of UAV operation. Also, the population density map, building to land ratio map, car traffic database is used to estimate the number of people exposed to collision with UAV. Finally, we assumed the operations of a UAV with two paths in Daejeon city and evaluate the ground risk of each UAV operations.

Improved Anti-Jamming Frame Error Rate and Hamming Code Repetitive Transmission Techniques for Enhanced SATURN Network Reliability Supporting UAV Operations (UAV 운영 신뢰성 개선을 위한 SATURN 통신망 항재밍 프레임 오율과 해밍코드 반복 전송 향상 기술)

  • Hwang, Yoonha;Baik, Jungsuk;Gu, Gyoan;Chung, Jong-Moon
    • Journal of Internet Computing and Services
    • /
    • v.23 no.3
    • /
    • pp.1-12
    • /
    • 2022
  • As the performance of Unmanned Aerial Vehicles (UAVs) are improving and the prices are lowering, it is expected that the use of UAVs will continuously grow in the future. It is important to always maintain control signal and video communication to operate remote UAVs stably, especially in military UAV operations, as unexpected jamming attacks can result in fatal UAV crashes. In this paper, to improve the network reliability and low latency when supporting UAV operations, the anti-jamming performance of Second generation Anti-jam Tactical UHF Radio for NATO (SATURN) networks is analyzed and enhanced by applying Forward Error Correction (FEC) and Minimum Shift Keying (MSK) modulation as well as Hamming code based multiple transmission techniques.

Study on Detection Technique for Coastal Debris by using Unmanned Aerial Vehicle Remote Sensing and Object Detection Algorithm based on Deep Learning (무인항공기 영상 및 딥러닝 기반 객체인식 알고리즘을 활용한 해안표착 폐기물 탐지 기법 연구)

  • Bak, Su-Ho;Kim, Na-Kyeong;Jeong, Min-Ji;Hwang, Do-Hyun;Enkhjargal, Unuzaya;Kim, Bo-Ram;Park, Mi-So;Yoon, Hong-Joo;Seo, Won-Chan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.1209-1216
    • /
    • 2020
  • In this study, we propose a method for detecting coastal surface wastes using an UAV(Unmanned Aerial Vehicle) remote sensing method and an object detection algorithm based on deep learning. An object detection algorithm based on deep neural networks was proposed to detect coastal debris in aerial images. A deep neural network model was trained with image datasets of three classes: PET, Styrofoam, and plastics. And the detection accuracy of each class was compared with Darknet-53. Through this, it was possible to monitor the wastes landing on the shore by type through unmanned aerial vehicles. In the future, if the method proposed in this study is applied, a complete enumeration of the whole beach will be possible. It is believed that it can contribute to increase the efficiency of the marine environment monitoring field.