• Title/Summary/Keyword: Unmanned Systems

Search Result 891, Processing Time 0.023 seconds

Study on Development of Korean Unmanned Systems through Analysis of U.S. Unmanned Systems Policy (미국의 무인체계 정책 분석을 통한 한국의 무인체계 발전에 관한 연구)

  • Park, Dongseon;Oh, Kyungwon
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.3
    • /
    • pp.65-70
    • /
    • 2021
  • This study presents a method to efficiently advance the Republic of Korea's Unmanned Systems through the analysis of the development of the U.S. Unmanned System Policy. After the occurrence of the September 11 attacks, the U.S. developed Unmanned Systems as a part of RMA and became the leader in this area. The system went through numerous trials and errors during the development and acquisition. From these experiences, the U.S. had embodied Unmanned Systems acquisition methods by establishing Unmanned Systems Development Guidance and DoD Autonomy Community of Interest in 2012. In addition, as diverse unmanned programs started to proceed, it promoted Core Technology development sharing and simplification of functions of the Unmanned Systems to exclude budget-wasting elements such as duplication of programs. The Republic of Korea must politically build a collaborative system between industry/academia/research institute/military and apply evolutionary development strategies from the first step of the development of the Unmanned Systems the future Game Changer. In operations, concepts of the Manned/Unmanned Systems complex operation should be established and intelligent S/W, Open System, and Cyber Security technologies to materialize them developed.

Development of Operational Requirements of Remote Control Interfaces for Unmanned Ground Combat Vehicles (지상무인전투차량 원격제어 인터페이스 운용 요구사항 개발)

  • Jo, Seongsik;Baik, Seungwon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.13 no.2
    • /
    • pp.18-25
    • /
    • 2017
  • The use of unmanned combat systems is of interest for future battlefield. Advanced techniques are being actively studied to build fully autonomous unmanned systems. However, there are technical, ethical and legal limitations for the fully autonomous unmanned combat systems. In addition, a remote controlled system is necessary so far in order to prepare for situations where fully autonomous unmanned systems fail to function properly. Thus, a procedure of developing operational requirements in system level is proposed and interface requirements of unmanned combat vehicles for remote control are described in this study.

Applying Cybersecurity and Anti-Tamper Methods for Secure Operating of Unmanned Weapon Systems (무인화 무기체계의 안정적인 운용을 위한 Cybersecurity 및 Anti-Tamper의 적용)

  • Lee, Min Woo
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.1
    • /
    • pp.36-42
    • /
    • 2020
  • Due to the population of the Republic of Korea is getting less, the shortage of available troops has become a big issue. In response to this, the need for Unmanned weapon systems is rising. To operate an Unmanned weapon system near borderlines or low altitude, it is necessary to protect not only the system itself but also operational information communicated between the Unmanned system and control station, so that they should be safe using Cybersecurity measures. Besides, it is critical to protect a few core technologies applied to Unmanned weapon systems throughout the Anti-Tamper measures. As the precedent studies only focus partially, Cybersecurity or Anti-Tamper, it is acknowledged that comprehensive studies are needed to be conducted. This study is to incorporate both concepts into Korea's defense acquisition process. Specifically, we will outline the concepts and needs of Cybersecurity and Anti-Tamper, and briefly present ways to apply them simultaneously.

A Method of System Effectiveness Analysis for Remote-Operated Unmanned Ground Vehicles Using OneSAF (OneSAF를 이용한 원격조종 지상무인차량 체계효과분석 방법)

  • Han, Sang Woo;Pyun, Jai Jeong;Cho, Hyunsik
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.40 no.4
    • /
    • pp.388-395
    • /
    • 2014
  • Nowadays unmanned ground systems are used in supporting of surveillance and explosive ordnance disposal. Also, we expect that will be used to remarkably enhance combat capability through network-based cooperative operations with other combat systems. In order to effectively develop those unmanned systems, we needs a systematic method to analyze combat effectiveness and validate required operation capabilities. In this paper, we propose a practical approach to simulate remote-operated unmanned ground systems by using OneSAF, an US-Army simulation framework. First of all, we design a simulation model of unmanned system by integrating with core components for wireless communications and remote control of mobility and fire. Next, we extend OneSAF functionality to create communication links that connects a remote controller with an unmanned vehicle and define a simulated behavior to operate unmanned vehicles via the communication links. Finally, we demonstrate the feasibility of the proposed model within OneSAF and summarize system effectiveness analysis results.

Practical Study about Obstacle Detecting and Collision Avoidance Algorithm for Unmanned Vehicle

  • Park, Eun-Young;Lee, Woon-Sung;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.487-490
    • /
    • 2003
  • In this research, we will devise an obstacle avoidance algorithm for a previously unmanned vehicle. Whole systems consist mainly of the vehicle system and the control system. The two systems are separated; this system can communicate with the vehicle system and the control system through wireless RF (Radio Frequency) modules. These modules use wireless communication. And the vehicle system is operated on PIC Micro Controller. Obstacle avoidance method for unmanned vehicle is based on the Virtual Force Field (VFF) method. An obstacle exerts repulsive forces and the lane center point applies an attractive force to the unmanned vehicle. A resultant force vector, comprising of the sum of a target directed attractive force and repulsive forces from an obstacle, is calculated for a given unmanned vehicle position. With resultant force acting on the unmanned vehicle, the vehicle's new driving direction is calculated, the vehicle makes steering adjustments, and this algorithm is repeated.

  • PDF

Evaluation of Maneuverability in Still Water of an Unmanned Surface Vehicle through Sea Trials (실선 시운전을 통한 무인수상정 정수중 조종성능 평가)

  • Jeon, Myung-Jun;Yoon, Hyeon-Kyu;Ryu, Jea-Kwan;Lee, Won-Hee;Ku, Pyung-Mo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.4
    • /
    • pp.253-261
    • /
    • 2021
  • This paper describes the process of evaluating maneuverability in still water of an unmanned surface vehicle based on data measured by performing sea trials. First, we set up a test scenario that is easy to analyze the maneuverability of the unmanned surface vehicle and to identify and verify the dynamics model. Since the attitude of hull varies according to the speed of the unmanned surface vehicle which has a planing hull shape, the relationship between waterjet RPM, speed and attitude is analyzed by performing straight forward tests at various speeds. The turning tests of the unmanned surface vehicle in which the waterjet angle rotates while turning are performed by changing the waterjet rotation angle under the condition of two representative speeds to analyze turning ability. The turning ability of the unmanned surface vehicle includes speed reduction, yaw rate, heel, and turing diameter at steady turning phase according to the speed and RPM.

Classification and Evaluation Method for Autonomy Levels of Unmanned Maritime Systems (무인해양시스템의 자율 수준 분류 및 평가 방안)

  • Kwon, Laeun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.404-414
    • /
    • 2016
  • Autonomy of unmanned systems is important because the unmanned system with high level of autonomy is able to perform desired tasks in unstructured environments without continuous human guidance. Evaluation of their autonomy is vital to realize the autonomous operation ability of unmanned system. Compared to the methods of evaluating the level of autonomy(LOA) for an unmanned ground vehicle(UGV) and unmanned aerial vehicle(UAV), the method of expressing the LOA of unmanned maritime system(UMS) is not established yet. Since UMS has a unique characteristics in terms of operational area, mission complexity and required technologies, compared to the UGV and UAV, it is required to establish for expressing the LOA for UMS. This paper reviews the current approaches to assess the LOA of unmanned system and proposes potential metrics for UMS in order to determine the autonomy levels of UMS.

Unmanned Last Mile Delivery Technology Level Analysis (무인 라스트마일 배송 기술 수준 분석)

  • Wooyeon Yu;Eunhye Kim;Dohyun Kim;Jaekyung Yang
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.4
    • /
    • pp.225-232
    • /
    • 2022
  • Recently, unmanned logistics delivery systems, such as UAV (Unmanned Aerial Vehicle, written as drone below) and autonomous robot delivery systems, have been implemented in many countries due to the rapid development of autonomous driving technology. The development of these new types of advanced unmanned logistics delivery systems is essential not only to become a leading logistics company but also to secure national competitiveness. In this paper, the application of the unmanned logistics delivery system was investigated in terms of market trends, overall technology level of last mile delivery drone and autonomous delivery robot. The direction of response to changes in the last mile delivery service market was checked through a comparison of the technological level between domestic companies that produce last mile devices and advanced foreign companies. As a result of this technology level analysis, the difference between domestic companies and advanced companies was shown using tables and figures to show their relative levels. The results of this analysis reflect the opinions of experts in the field of last-mile delivery technology. In addition, the technology level of unmanned logistics delivery systems for each country was analyzed based on the number of related technology patents. Lastly, insights for the technology level analysis of unmanned last mile delivery systems were proposed as a conclusion.

Development of a Cooperative Heterogeneous Unmanned System for Delivery Services (물류수송을 위한 이종 협업 무인 시스템 개발)

  • Cho, Sungwook;Lee, Dasol;Jung, Yeondeuk;Lee, Unghui;Shim, David Hyunchul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.12
    • /
    • pp.1181-1188
    • /
    • 2014
  • In this paper, we propose a novel concept foran unmanned delivery service using a cooperative heterogeneous unmanned system consisting of a self-driving car and an unmanned aerial vehicle (UAV). The proposed concept is suitable to deliver parcels in high-density and high-rise urban or residential areas. In order to achieve the proposed concept, we will develop acooperative heterogeneous unmanned system. Customers can order goods using a smartphone application and the order information, including the position of the customer and the order time, and the package is transported automatically by the unmanned systems. The system assigns the tasks suitable for each unmanned vehicle by analyzing it based on map information. Performance is validated by experiments consisting of autonomous driving and flight tests in a real environment. For more evaluation, the landing position error analysis is performed using circular error probability (CEP).

On the Derivation of Safety Requirements and Specifications based Integrated System Operation Scenario for the Development of Unmanned Courier Storage Device Platform in Urban Areas

  • Lee, Sang Min;Park, Jae Min;Kim, Joo Uk;Kim, Young Min
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.103-111
    • /
    • 2021
  • In modern society, digital lifestyles are spreading to minimize contact with people and to receive contactless information. The spread trend has established an unmanned distribution system in which transactions through contactless technologies such as kiosks and chatbots are activated in face-to-face transactions with sellers and consumers. In order to streamline logistics supply worldwide, digital new deal based joint logistics hubs, unmanned courier storage platforms, and fresh logistics based last mile services have been developed into unmanned logistics systems, focusing on the intelligent logistics system automation process. Unmanned courier storage system installed in urban areas and home to daily logistics where volume is concentrated are provided with fresh logistics services through cold chain and receiving freights in contactless environments. Development is also underway to minimize safety accidents caused by courier services, such as managing various information based on the integrated control system. This paper defines the concept of integrated operation for the development of a platform for contactless unmanned courier storage device developed into next-generation logistics system. In addition, we intend to develop systems engineering-based output for deriving safety requirements and specifications by identifying risk sources that may occur in the operational scenario. Therefore, the goal is to establish a foundation for safety and reliability between interfaces of logistics systems to be installed in apartment and subway station environments that want to provide unmanned logistics services to various consumers.