• Title/Summary/Keyword: Unmanned Autonomous Vehicle

Search Result 239, Processing Time 0.02 seconds

Depth Control of a Hybrid Underwater Glider in Parallel with Control of Horizontal Tail Wing (수평 꼬리 날개의 제어를 병행하는 하이브리드 수중 글라이더의 깊이 제어)

  • Joo, Moon Gab
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.1
    • /
    • pp.25-31
    • /
    • 2019
  • An underwater glider is a type of autonomous unmanned vehicle and it advances using a vertical zig-zag glide. For this purpose, the position of an internal battery is regulated to control its attitude, and the amount of water in a buoyancy bag is regulated to control the depth. Underwater glider is suitable for a long-distance mission for a long time, because the required energy is much smaller than the conventional autonomous unmanned vehicle using propeller propulsion system. In this paper, control of horizontal tail wing is newly added to the conventional battery position and buoyancy control. The performance of the proposed controller is shown through Matlab simulation.

Study on Unmanned Hybrid Unmanned Surface Vehicle and Unmanned Underwater Vehicle System

  • Jin, Han-Sol;Cho, Hyunjoon;Lee, Ji-Hyeong;Jiafeng, Huang;Kim, Myung-Jun;Oh, Ji-Youn;Choi, Hyeung-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.475-480
    • /
    • 2020
  • Underwater operating platforms face difficulties regarding power supply and communications. To overcome these difficulties, this study proposes a hybrid surface and underwater vehicle (HSUV) and presents the development of the platform, control algorithms, and results of field tests. The HSUV is capable of supplying reliable power to the unmanned underwater vehicle (UUV) and obtaining data in real time by using a tether cable between the UUV and the unmanned surface vehicle (USV). The HSUV uses global positioning system (GPS) and ultra-short base line sensors to determine the relative location of the UUV. Way point (WP) and dynamic positioning (DP) algorithms were developed to enable the HSUV to perform unmanned exploration. After reaching the target point using the WP algorithm, the DP algorithm enables USV to maintain position while withstanding environmental disturbances. To ensure the navigation performance at sea, performance tests of GPS, attitude/heading reference system, and side scan sonar were conducted. Based on these results, manual operation, WP, and DP tests were conducted at sea. WP and DP test results and side scan sonar images during the sea trials are presented.

Development of an Autonomous Situational Awareness Software for Autonomous Unmanned Aerial Vehicles

  • Kim, Yun-Geun;Chang, Woohyuk;Kim, Kwangmin;Oh, Taegeun
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.2
    • /
    • pp.36-44
    • /
    • 2021
  • Unmanned aerial vehicles (UAVs) are increasingly needed as they can replace manned aircrafts in dangerous military missions. However, because of their low autonomy, current UAVs can execute missions only under continuous operator control. To overcome this limitation, higher autonomy levels of UAVs based on autonomous situational awareness is required. In this paper, we propose an autonomous situational awareness software consisting of situation awareness management, threat recognition, threat identification, and threat space analysis to detect dynamic situational change by external threats. We implemented the proposed software in real mission computer hardware and evaluated the performance of situational awareness toward dynamic radar threats in flight simulations.

An Estimation Method of Drivable Path for Unmanned Ground Vehicle Using Camera and 2D Laser Rangefinder on Unpaved Road (카메라와 2차원 레이저 거리센서를 활용한 비포장 도로 환경에서의 지상무인차량의 주행가능영역 추정 기법)

  • Ahn, Seong-Yong;Kim, Chong-Hui;Choe, Tok-Son;Park, Yong-Woon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.993-1001
    • /
    • 2011
  • Unmanned ground vehicle for facility protection mostly uses model of territory for autonomous navigation. However, modeling of territory using several sensors is highly time consuming and sometimes inefficient for road application. Therefore, an estimation of drivable path based on features of road is required for high speed autonomous navigation on road. In this paper, an estimation method of drivable path using camera and 2D laser rangefinder is proposed. First, a vanishing point is estimated based on image data from CCD camera. Second, a road width is estimated based on range data from 2D laser rangefinder. Finally, the drivable path is estimated by fusing the vanishing point and the road width. The proposed method is tested on both well-structured road and unpaved road like cross-country situation.

Development Trend of the Autonomous Flight Control Technology (자율비행기술 동향)

  • Seong, Kie-Jeong;Kim, Eung-Tai;Kim, Seong-Pil
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.6 no.2
    • /
    • pp.143-153
    • /
    • 2008
  • This paper describes the current research trend and future development direction of autonomous flight of the aircraft. The autonomous flight means that aircraft control system recognize and cope with the emergency situation confronted during the flight by itself. Current research for autonomous flight technology is mainly performed for the application to unmanned air vehicle. Considering advent of future air traffic management system and increasing demand of the unmanned air vehicle application, however, autonomous flight technology required to be combined with future air traffic management system. In this paper, the current air traffic management system and anticipating change in future air traffic management system was investigated and research activities of autonomous flight technology was described as well as future prospect.

  • PDF

A Study on Legal Problems over Unmanned Vehicle of the Fourth Industrial Revolution - Focusing on the Autonomous Driving Vehicle and Drone - (제4차 산업혁명 시대의 무인 이동체를 둘러싼 법적 문제점 연구 - 자율주행자동차와 드론을 중심으로 -)

  • Kye, Kyoung-Moon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.7
    • /
    • pp.519-527
    • /
    • 2017
  • The trust issue on the safety of autonomous vehicle is a very important in regard to the demand generation of relevant industries. To secure the trust, The study of legal liability issue should be prior to an accident of the autonomous vehicle. In civil law, it is possible to make the automobile manufacturer take legal responsibility with the "Product Liability Act". Whereas, in criminal law, it is difficult to make him take legal responsibility since the criminal law holds the actor responsible. To solve these problems, this article proposes the establishment of the "Special Act on Autonomous Vehicle". Also, there is a demand for building infra structures and system to operate the (fully) self-propelled vehicle and establishing "certification" systems.

Wide-Range Mapping Methodology for Unmanned Ground Vehicle Based on DGPS (무인자율차량 적용을 위한 DGPS 기반 전역지도 작성기법)

  • Shon, Woong-Hee;Yu, Seung-Nam;Kim, Young-Il;Han, Chang-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.13 no.2
    • /
    • pp.85-92
    • /
    • 2010
  • This study shows the path generation algorithm for an UGV (Unmanned Ground Vehicle). The developed UGV frame which has a 4-wheel driven mechanism and diesel source is applied. Proposed vehicle system in this research is aimed to military purpose. To achieve the unmanned autonomous driving, following two main issues are considered. First, behavior module for positioning and posture of vehicle system and second, cognition module to receive the information from environment are proposed and verified. To do this, rover which can acquire the positioning information from earth coordinate and IMU (Inertial Measurement Unit) which can measure the posture are combined to design the path planning algorithm.

  • PDF

Autonomous Traveling of Unmanned Golf-Car using GPS and Vision system (GPS와 비전시스템을 이용한 무인 골프카의 자율주행)

  • Jung, Byeong Mook;Yeo, In-Joo;Cho, Che-Seung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.6
    • /
    • pp.74-80
    • /
    • 2009
  • Path tracking of unmanned vehicle is a basis of autonomous driving and navigation. For the path tracking, it is very important to find the exact position of a vehicle. GPS is used to get the position of vehicle and a direction sensor and a velocity sensor is used to compensate the position error of GPS. To detect path lines in a road image, the bird's eye view transform is employed, which makes it easy to design a lateral control algorithm simply than from the perspective view of image. Because the driving speed of vehicle should be decreased at a curved lane and crossroads, so we suggest the speed control algorithm used GPS and image data. The control algorithm is simulated and experimented from the basis of expert driver's knowledge data. In the experiments, the results show that bird's eye view transform are good for the steering control and a speed control algorithm also shows a stability in real driving.

Vision Processing for Precision Autonomous Landing Approach of an Unmanned Helicopter (무인헬기의 정밀 자동착륙 접근을 위한 영상정보 처리)

  • Kim, Deok-Ryeol;Kim, Do-Myoung;Suk, Jin-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.1
    • /
    • pp.54-60
    • /
    • 2009
  • In this paper, a precision landing approach is implemented based on real-time image processing. A full-scale landmark for automatic landing is used. canny edge detection method is applied to identify the outside quadrilateral while circular hough transform is used for the recognition of inside circle. Position information on the ground landmark is uplinked to the unmanned helicopter via ground control computer in real time so that the unmanned helicopter control the air vehicle for accurate landing approach. Ground test and a couple of flight tests for autonomous landing approach show that the image processing and automatic landing operation system have good performance for the landing approach phase at the altitude of $20m{\sim}1m$ above ground level.

Genetic Algorithm Based 3D Environment Local Path Planning for Autonomous Driving of Unmanned Vehicles in Rough Terrain (무인 차량의 험지 자율주행을 위한 유전자 알고리즘 기반 3D 환경 지역 경로계획)

  • Yun, SeungJae;Won, Mooncheol
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.803-812
    • /
    • 2017
  • This paper proposes a local path planning method for stable autonomous driving in rough terrain. There are various path planning techniques such as candidate paths, star algorithm, and Rapidly-exploring Random Tree algorithms. However, such existing path planning has limitations to reflecting the stability of unmanned ground vehicles. This paper suggest a path planning algorithm that considering the stability of unmanned ground vehicles. The algorithm is based on the genetic algorithm and assumes to have probability based obstacle map and elevation map. The simulation result show that the proposed algorithm can be used for real-time local path planning in rough terrain.