• Title/Summary/Keyword: Unloading ratio

Search Result 108, Processing Time 0.023 seconds

J-R Curve Characterization by Load Ratio Analysis and Unloading Compliance Method for SA508 C-3 steel (SA508-3재의 제하컴플라이언스법과 하중비해석을 이용한 파괴저항곡선 평가)

  • 임만배;차귀준;윤한기;안원기
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.65-75
    • /
    • 1998
  • The fracture resistance curve is one of most important and design techniques employed in nuclear pressure vessel structures. This study is to evaluate the J-R curve characteristics for the SA508C-3 by the unloading compliance method and load rato analysis. The effect of strain aging for the exponential correlation of the J-R curve in this metal are investigated at room temperature, 20$0^{\circ}C$ and 30$0^{\circ}C$. The load ratio analysis method can evaluate the J-R curve by using the simple tension load-displacement curve only without the repeat of the unloading and loading. Therefore, the analysis by the proposed load ratio method has a merit, in comparison with the unloading compliance method, which can measure the crack length without the precision measurement equipment.

  • PDF

A Study on the Unloading Stiffness of Instrumented Indentation Tests (계장화 압입 시험에서 하중 제거 곡선의 강성률에 관한 고찰)

  • 이병섭;이호진;이봉상
    • Transactions of Materials Processing
    • /
    • v.13 no.1
    • /
    • pp.21-26
    • /
    • 2004
  • Instrumented indentation tests have been used for estimating material properties. In order to analyze deformation characteristics with various factors, the unloading stiffness should be properly determined from the elastic behavior. The unloading stiffness is generally obtained from the shifted power functions fitting with the experimental unloading data. However, the functions often give rise to a poor representation of actual data, and also the unloading stiffness is governed by unloading condition. In this study, both numerical and experimental conditions to obtain proper unloading stiffness were investigated. The result showed that the amount of unloading ratio and hold time played an important role in fitting the unloading curves. The current efforts can successfully provide the unloading stiffness for indentation material properties.

Evaluation of J-R Curve for Aluminum 5083 Alloy Weldment by Load Ratio Analysis (Load Ratio 해석에 의한 알루미늄 5083 합금 용접부의 J-R곡선 평가)

  • 윤한기;김연겸
    • Journal of Welding and Joining
    • /
    • v.15 no.4
    • /
    • pp.178-186
    • /
    • 1997
  • The purpose of this study is to evaluate the J-R curve characteristics for the 5083 aluminum alloy weldment by the load ratio analysis. The results of the load ratio analysis are compared with those of the J-R curve which are obtained by the ASTM unloading compliance method. The crack length calculated by the load ratio analysis is agrees well with the measured final crack length. The slope of the exponential J-R curve estimated by the load ratio analysis is slightly smaller than that by the ASTM unloading compliance method. The exponential correlation of the J-R curve for the 5083 aluminum alloy base metal by the load ratio analysis is J = 93.88 ${\Delta}{\alpha}^{0.375}$. That for the weld metal and HAZ is J = 69.87 ${\Delta}{\alpha}^{0.389}$ and J = 70.59 ${\Delta}{\alpha}^{0.359}$ respectively. The J-R curve obtained by the ASTM unloading compliance method is overpredicted and should be offsetted due to the initial negative crack. On the other hand, the load ratio analysis method can evaluate the J-R curve by only load displacement curve without particular crack measurement equipment.

  • PDF

Validity Examination on Evaluation of J-R Curve in the Nuclear Reactor Pressure Vessel Steels and Aluminum Alloys by Load Ratio Analysis (원자로 압력용기강 및 Al 합금재의 J-R곡선평가시 Load Ratio 해석의 유효성 검토)

  • Yoon, H.K.;Woo, D.H.;Kim, Y.K.;Cha, G.J.
    • Journal of Power System Engineering
    • /
    • v.1 no.1
    • /
    • pp.80-90
    • /
    • 1997
  • The purpose of this study is to evaluate the validity examination of the J-R curve characteristics for the nuclear reactor pressure vessel steels and Al alloys by the load ratio analysis. The results of the load ratio analysis are compared with those of the J-R curve which are obtained by the ASTM unloading compliance method. The crack length calculated by the load ratio analysis is agree well with the measured final crack length. The slope of the exponential J-R curve estimated by the load ratio analysis is slightly smaller than that by the ASTM unloading compliance method. The J-R curve obtained by the ASTM unloading compliance method is over-predicted and should be offsetted due to the initial negative crack. On the other hand, the load ratio analysis method can evaluate the J-R curve by only load-displacement curve without particular crack measurement equipment.

  • PDF

Optimal Strain Rate of Unloading-Reloading Cycle in Constant Rate of Strain Consoildation Test (제하-재재하 시 CRS 압밀 시험의 최적 변형률 속도)

  • Park, Ka-Hyun;Yune, Chan-Young;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1156-1167
    • /
    • 2010
  • The constant rate of strain (CRS) consolidation test has been widely used to evaluate consolidation characteristics of soils instead of the standard Incremental Loading Test. In practical problems, after the ground improvement, the condition of the soil is over-consolidated. Therefore, it is important to determine the recompression indices and the coefficient of consolidation(or the coefficient of swelling) of unloading-reloading cycle to predict the settlement behavior. However, since standard testing procedures or studies related with strain rate are insufficient especially in unloading-reloading cycle, it is difficult to predict the settlement field behavior accurately from the CRS consolidation test results in spite of its lots of strengths. The several CRS consolidation tests were performed changing the unloading strain rate from 0.2%/hr to 20%/hr with vertical drainage condition using the reconstituted kaolinite sample. For the reconstituted kaolinite sample in CRS consolidation test, the recompression indices are insensitive to the strain rate. It is revealed that the coefficient of consolidation of reloading is affected by the developed pore pressure during unloading. Additionally, the test should be conducted in the positive pore pressure ratio range (3~15%) to obtain the reasonable coefficient of consolidation in the whole range(loading, unloading and reloading).

  • PDF

An analytical model for PVC-FRP confined reinforced concrete columns under low cyclic loading

  • Fang, Yuan;Yu, Feng;Chen, Anchun;Wang, Shilong;Xu, Guoshi
    • Structural Engineering and Mechanics
    • /
    • v.77 no.2
    • /
    • pp.179-196
    • /
    • 2021
  • Experimental investigations on the seismic behaviors of the PVC-FRP Confined Reinforced Concrete (PFCRC) columns under low cyclic loading are carried out and two variable parameters including CFRP strips spacing and axial compression ratio are considered. The PFCRC column finally fails by bending and is characterized by the crushing of concrete and yielding of the longitudinal reinforcement, and the column with a high axial compression ratio is also accompanied by the cracking of the PVC tube and the fracture of CFRP strips. The hysteretic curves and skeleton curves of the columns are obtained from the experimental data. With the increase of axial compression ratio, the stiffness degradation rate accelerates and the ductility decreases. With the decrease of CFRP strips spacing, the unloading sections of the skeleton curves become steep and the ductility reduces significantly. On the basis of fiber model method, a numerical analysis approach for predicting the skeleton curves of the PFCRC columns is developed. Additionally, a simplified skeleton curve including the elastic stage, strengthening stage and unloading stage is suggested depending on the geometric drawing method. Moreover, the loading and unloading rules of the PFCRC columns are revealed by analyzing the features of the skeleton curves. The quantitative expressions that are used to predict the unloading stiffness of the specimens in each stage are proposed. Eventually, an analytical model for the PFCRC columns under low cyclic loading is established and it agrees well with test data.

Prediction of Inelastic Force-Displacement Relationships of Reinforced Concrete Shear Wall Systems Based on Prescribed Ductilities (강성저하 실험식 및 연성계수를 이용한 철근콘크리트 전단벽 구조시스템의 비탄성 하중-변위 관계식 예측)

  • 홍원기
    • Computational Structural Engineering
    • /
    • v.8 no.4
    • /
    • pp.159-171
    • /
    • 1995
  • The parameters describing a complete hysteresis loop include pinch force, drift offset, effective stiffness, unloading and reloading trangential stiffness. Analytical equations proposed to quantify the nonlinear, inelastic behavior of reinforced shear walls can be used to predict these parameters as a function of axial load and drift ratio. For example, drift offset, effective stiffness, and first and second unloading and reloading tangential stiffness are calculated using equations obtained from test data for a desired drift ratio or ductility level. Pinch force can also be estimated for a given drift ratio and axial load. The effective virgin stiffness at the first yield and its post yield reduction can be estimated. The load deflection response of flexural reinforced concrete shear walls can now be estimated based on the effective wall stiffness that is a function of axial force and drift ratio.

  • PDF

Evaluation on J-R Curve of 5083 aluminum Alloy Weldment by Load Ratio analysis (Load Ratio 해석에 의한 Al 5083 알루미늄합금 용접부의 J-R곡선 평가)

  • 윤한기;김연겸;우대호
    • Proceedings of the KWS Conference
    • /
    • 1997.05a
    • /
    • pp.91-98
    • /
    • 1997
  • This research is to evaluate of the J-R curve characteristic in 5083 aluminum alloy weldment by utilizing the load ratio analysis. This analysis method can be evaluated the J-R curve only with load-displacement curve without any particular precision instrument equipment in CT specimen. For validity, the results of the load ratio analysis are compared with the those of the J-R curve, which are obtained by the ASTM standard unloading compliance method. The calculated crack length of the load ratio analysis is well appropriate that the measured final crack length. And the J-R curve slope estimated by the load ratio analysis is slightly smaller than that by the ASTM unloading compliance method.

  • PDF

Evaluation on elastic-plastic fracture resistance curve of SA508C-3 and aluminum alloy steels by load-ratio method (Load-ratio 법에 의한 SA508C-3와 알루미늄 합금의 탄소성 파괴저항 곡선평가)

  • Yoon, H. K.
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.98-105
    • /
    • 1996
  • A method is proposed to evaluate the elastic-plastic fracture resistance curve only with load displacement records without the crack length measurement in CT specimen. This method is based on the idea that the effect of plastic deformation and the crack growth can be measured only by using a load-displacement record. If we know the reference-load curve representing the hardening of specimen, then the crack extension can be calculated by the elastic compliance determined from the load ratio. The results of this proposed method were compared to those of the elastic-plastic fracture resistance curve for the ASTM standard unloading compliance method. The experimental results for two kinds of ductile materials showed that the proposed method well simulates the material J-R curves. This method is currently applied for CT specimens. but it can be extended to the other specimen geometries.

  • PDF

The Swelling Characteristics of Clayey Soil by CRS Consolidation Test (CRS 압밀시험에 의한 점성토의 팽창특성에 관한 연구)

  • 이응준;한상재;김지용;김수삼
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.335-342
    • /
    • 2000
  • In this study, the swelling characteristics of reconstituted clayey soil were investigated by STD and CRS test. The strain rate during loading was constant i.e. 0.05 %/min, 0.03 %/min and during unloading was varied in proportion to 1/1, 1/5, 1/10 and 1/15 of strain rate during loading. From this study the following conclusions were obtained; (1) There were similar values, especially, during unloading in case of 1/10 or 1/15 of strain rate during loading and the test results between STD and CRS were much to be alike. (2) The cross point of effective stress versus excess pore water pressure ratio curve, was increased during unloading, while the stress level of the cross point was decreased. The stress level can be separated into two zones according to the swelling index named Cs1 and Cs2. From the test results, the values of Cs1 were approximately constant irrespective of strain rate during unloading, but the values of Cs2 were much influenced by strain rate. (3) In CRS consolidation tests, it was found that unloading strain rate did not affect on the existence of zone.

  • PDF