• Title/Summary/Keyword: Unknown protein

Search Result 628, Processing Time 0.031 seconds

Comparative proteome analysis of diploid and tetraploid root in Platycodon grandiflorum

  • Kwon, Soo Jeong;Roy, Swapan Kumar;Yoo, Jang-Hawan;Cho, Seong-Woo;Kim, Hag Hyun;Boo, Hee Ock;Woo, Sun-Hee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.123-123
    • /
    • 2017
  • In spite of the potential medicinal significance and a wide range of pharmacologic properties of Platycodon grandiflorum, the molecular mechanism of its roots is still unknown. The present study was conducted to profile proteins from 3, 4 and 5 months aged diploid and tetraploid roots of Platycodon grandiflorum using high throughput proteome approach. Two-dimensional gels stained with CBB, a total of 68 differential expressed proteins were identified from the diploid root out of 767 protein spots using image analysis by Progenesis SameSpot software. Out of total differential expressed spots, 29 differential expressed protein spots (${\geq}2-fold$) were analyzed using LTQ-FTICR MS whereas a total of 24 protein spots were up-regulated and 5 protein spots were down-regulated. On the contrary, in the case of tetraploid root, a total of 86 differential expressed proteins were identified from tetraploid root out of 1033 protein spots of which a total of 39 differential expressed protein spots (${\geq}2-fold$) were analyzed using LTQ-FTICR MS whereas a total of 21 protein spots were up-regulated and a total of 18 protein spots were down-regulated. It was revealed that the identified proteins from the explants were mainly associated with the nucleotide binding, oxidoreductase activity, transferase activity. Taken together, the identified proteins may be helpful to identify key candidate proteins for genetic improvement of plants.

  • PDF

A Protein Tyrosine Phosphatase Inhibitor, Pervanadate, Inhibits Angiotensin II-Induced β-Arrestin Cleavage

  • Jang, Sei-Heon;Hwang, Si Ae;Kim, Mijin;Yun, Sung-Hae;Kim, Moon-Sook;Karnik, Sadashiva S.;Lee, ChangWoo
    • Molecules and Cells
    • /
    • v.28 no.1
    • /
    • pp.25-30
    • /
    • 2009
  • ${\beta}$-Arrestins turn off G protein-mediated signals and initiate distinct G protein-independent signaling pathways. We previously demonstrated that angiotensin $AT_1$ receptorbound ${\beta}$-arrestin 1 is cleaved after $Phe^{388}$ upon angiotensin II stimulation. The mechanism and signaling pathway of angiotensin II-induced ${\beta}$-arrestin cleavage remain largely unknown. Here, we show that protein Tyr phosphatase activity is involved in the regulation of ${\beta}$-arrestin 1 cleavage. Tagging of green fluorescent protein (GFP) either to the N-terminus or C-terminus of ${\beta}$-arrestin 1 induced conformational changes and the cleavage of ${\beta}$-arrestin 1 without angiotensin $AT_1$ receptor activation. Orthovanadate and molybdate, inhibitors of protein Tyr phosphatase, attenuated the cleavage of C-terminal GFP-tagged ${\beta}$-arrestin 1 in vitro. The inhibitory effects of okadaic acid and pyrophosphate, which are inhibitors of protein Ser/Thr phosphatase, were less than those of protein Tyr phosphatase inhibitors. Cell-permeable pervanadate inhibited angiotensin II-induced cleavage of ${\beta}$-arrestin 1 in COS-1 cells. Our findings suggest that Tyr phosphorylation signaling is involved in the regulation of angiotensin II-induced ${\beta}$-arrestin cleavage.

Stimulation of eNOS-Ser617 Phosphorylation by Fluid Shear Stress in Endothelial Cells

  • Boo, Yong-Chool
    • Journal of Applied Biological Chemistry
    • /
    • v.48 no.4
    • /
    • pp.178-182
    • /
    • 2005
  • Nitric oxide (NO) produced from endothelial cells plays a critical role in vascular physiology. The regulation of endothelial NO synthase (eNOS) involves various mechanisms including multiple Ser/Thr phosphorylations. Recently, eNOS-Ser617 was newly recognized to be phosphorylated in response to humoral factors including vascular endothelial growth factor. However, it remains unknown whether and how eNOS-Ser617 phosphorylation is stimulated by shear stress, the primary stimulus of endothelial NO production. This issue was explored in the present study using cultured bovine aortic endothelial cells (BAECs). Over-expression of a constitutively active protein kinase B(Akt) mutant in BAECs increased Ser617 phosphorylation while constitutively active protein kinase A mutant had no effect. When BAECs were subjected to an arterial level of laminar shear stress, eNOS-Ser617 phosphorylation was clearly increased in a time-dependent manner. Shear stress also stimulated Akt phosphorylation at Thr308, one of the key regulatory sites. The time courses of eNOS-Ser617 and Akt-Thr308 phosphorylations appeared to be very similar. These results suggested that eNOS-Ser617 phosphorylation, mediated by Akt, is a physiological response to the mechanical shear stress, involved in the regulation of NO production in endothelial cells.

Regulation of Protein Expression in Mouse Liver by Inorganic Arsenic: Proteomic Analysis (무기비소에 의한 마우스 간의 단백질 발현 조절 : 단백체 분석)

  • Jin Bo-Hwan;Seong Je-Kyung;Ryu Doug-Young
    • Environmental Mutagens and Carcinogens
    • /
    • v.26 no.2
    • /
    • pp.35-40
    • /
    • 2006
  • Background: Inorganic arsenic is a human carcinogen that can target the liver, but its carcinogenic mechanisms are still unknown. Inorganic arsenic induces a spectrum of tumors including hepatocellular carcinoma in mice. Methods: Pregnant C3H mice were supplied with drinking water containing 50 ppm sodium arsenite during their pregnancy. The protein expression profile in the liver of 0.5-day-old. male offsprings exposed transplacentally to sodium arsenite was analyzed using protein 2D gel electrophoresis followed by mass spectrometry (MALDI-TOF). Results: Expression of proteins such as hydroxymethylglutaryl-CoA synthase mitochondrial precursor (HMG-CoA synthase), ${\beta}$-actin (cytoplasmic 1) and apolipoprotein A-IV precursor (Apo-AIV) were induced in mouse liver by sodium arsenite, while uricase (urate oxidase), guanine nucleotidebinding protein beta subunit 2-like 1 (RACK1) and fructose-bisphosphate aldolase B (Aldolase 2) were down-regulated. Summary: Expression of proteins that have been implicated in carcinogenesis, such as HMG-CoA, ${\beta}$-actin, and RACK1, was regulated in the liver of mice transplacentally exposed to inorganic arsenic.

  • PDF

Characterization of the cellular localization of C4orf34 as a novel endoplasmic reticulum resident protein

  • Jun, Mi-Hee;Jun, Young-Wu;Kim, Kun-Hyung;Lee, Jin-A;Jang, Deok-Jin
    • BMB Reports
    • /
    • v.47 no.10
    • /
    • pp.563-568
    • /
    • 2014
  • Human genome projects have enabled whole genome mapping and improved our understanding of the genes in humans. However, many unknown genes remain to be functionally characterized. In this study, we characterized human chromosome 4 open reading frame 34 gene (hC4orf34). hC4orf34 was highly conserved from invertebrate to mammalian cells and ubiquitously expressed in the organs of mice, including the heart and brain. Interestingly, hC4orf34 is a novel ER-resident, type I transmembrane protein. Mutant analysis showed that the transmembrane domain (TMD) of hC4orf34 was involved in ER retention. Overall, our results indicate that hC4orf34 is an ER-resident type I transmembrane protein, and might play a role in ER functions including $Ca^{2+}$ homeostasis and ER stress.

The Protein Kinase Activity of Phytochrome Functions in Regulating Plant Light Signaling

  • Shin, Ah-Young;Han, Yun-Jeong;Song, Pill-Soon;Kim, Jeong-Il
    • Rapid Communication in Photoscience
    • /
    • v.2 no.2
    • /
    • pp.56-59
    • /
    • 2013
  • Plant phytochromes, molecular light switches that regulate various aspects of plant growth and development, are known as autophosphorylating serine/threonine kinases. Although recent studies reveal that phytochrome autophosphorylation plays an important role in the regulation of phytochrome signaling through the control of phyA protein stability, the in vivo functional roles of phytochrome kinase activity in plant light signaling are largely unknown. Thus, it is necessary to investigate the detailed function of phytochrome as a protein kinase, which might include mapping of kinase domain on the phytochrome molecule, searching for substrates that could be phosphorylated by phyA, and in vivo functional analysis of the kinase activity with phytochrome mutants displaying reduced kinase activity. Our recent studies reveal that the kinase activity of phytochrome plays a positive role in plant light signaling. Therefore, we highlight the current knowledge about the functional roles of phytochrome kinase activity in the light signal transduction of plants, based on our recent results.

Characterization of the Small Cryptic Plasmid, pGD2, of Klebsiellia sp. KCL-2.

  • Yoo, Ju-Soon;Kim, Hae-Sun;Chung, Soo-Yeol;Lee, Young-Choon;Cho, Young-Soo;Choi, Yong-Lark
    • BMB Reports
    • /
    • v.34 no.6
    • /
    • pp.584-589
    • /
    • 2001
  • One of the cryptic plasmids from the oil degrading bacterium Klebsiella sp. KCL-2, the small plasmid pGD2, has been identified and characterized. This plasmid has a size of 3.6 kb with unknown functions. We constructed the recombinant plasmid pMGD2. The nucleotide sequences of the plasmid were determined and two open reading frames were detected. ORF1 encodes a replication initiator protein (RepA), which has a high degree of homology with the protein of ColE2 plasmid. The product encoded by ORF2 showed a high similarity with the transposase protein of IS5. IS5 is 1195 by long and contains an inverted terminal repetition of 16 bp with one mismatch. Stem-loop structures in the 5'untranslated region of the repA suggest that a putative gene, incA, is located in a complementary strand to the leader region of the repA mRNA.

  • PDF

Physiological Responses of Oxygen-Tolerant Anaerobic Bifidobacterium longum under Oxygen

  • Ahn, Jun-Bae;Hwang, Han-Joon;Park, Jong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.443-451
    • /
    • 2001
  • In order to investigate what kind of response anaerobic bifidobacteria has on oxygen stress, five oxygen-tolerant bifidobacteria were isolated from human fecal samples. All were temporarily identified as Bifidobacterium longum through an analysis of carbohydrate utilization patterns and cellular fatty acid profiles. In the presence of oxygen, the lag phase became extended and the cell growth was suppressed. Bifidobacterial cell was able to remove dissolved oxygen in an early stage of growth and to overcome oxygen stress to a certain extent. The cell became long n size and showed a rough surface containing many nodes which were derived from abnormal or incomplete cell division. Cellular fatty acid profiled changed remarkably under a partially aerobic condition, so that the carbon chain of cellular fatty acid became short. All the dimethyl acetals originated from plasmalogen were reduced, any cyclopropane fatty acid, 9, 10-methyleneoctadecanoic acid ($C_{19:0}cyc9,10$), was increased remarkably. Oxygen stress induced a 5.5 kD protein in B. longum JI 1 of the oxygen-teolerant bifidobacteria, that was named Osp protein, and its N-terminal amino acid sequence was as follows: unknown amino acid-Thr-Gly-Val-Arg-Phe-Ser-Asp-Asp-Glu. Therefore, the oxygen-tolerant bifidobacteria seemed to defend against oxygen stress byincreasing the content of short fatty acid and cyclopropane fatty acid, and induction of an oxygen stress protein, but not the plasmalogen.

  • PDF

Detection of similar GPCRs by using protein secondary structures

  • Ku, Ja-Hyo;Yoon, Young-Woo
    • 한국정보컨버전스학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.39-42
    • /
    • 2008
  • G protein-coupled receptor(GPCR) family is a cell membrane protein, and plays an important role in a signaling mechanism which transmits external signals through cell membranes into cells. Now, it is estimated that there may be about 800-1000 GPCRs in a human genome. But, GPCRs each are known to have various complex control mechanisms and very unique signaling mechanisms. GPCRs are involved in maintaining homeostasis of various human systems including an endocrine system or a neural system and thus, disorders in activity control of GPCRs are thought to be the major source of cardiovascular disorders, metabolic disorders, degenerative disorders, carcinogenesis and the like. As more than 60% of currently marketed therapeutic agents target GPCRs, the GPCR field has been actively explored in the pharmaceutical industry. Structural features, and class and subfamily of GPCRs are well known by function, and accordingly, the most fundamental work in studies identifying the previous GPCRs is to classify the GPCRs with given protein sequences. Studies for classifying previously identified GPCRs more easily with mathematical models have been mainly going on. Considering that secondary sequences of proteins, namely, secondary binding structures of amino acids constituting proteins are closely related to functions, the present paper does not place the focus on primary sequences of proteins as previously practiced, but instead, proposes a method to transform primary sequences into secondary structures and compare the secondary structures, and then detect an unknown GPCR assumed to have a same function in databases of previously identified GPCRs.

  • PDF

Intensive Proteomic Approach to Identify Secreted Peptides/Proteins from 3T3-L1 Adipocytes using Gel Electrophoresis and Liquid Chromatograph Separation Methods (젤 전기영동 및 액체 크로마토그래피 분리 방법을 이용하여 지방 세포로부터 분비되는 단백질들에 대한 프로테오믹스 연구 방법)

  • Hwang, Hyun-Ho;Baek, Moon-Chang
    • YAKHAK HOEJI
    • /
    • v.55 no.3
    • /
    • pp.203-212
    • /
    • 2011
  • Adipocytes have been known to secrete a number of important proteins called adipokines with roles in energy metabolism, reproduction, cardiovascular function and immunity. In this study we have attempted to identify intensively secretory proteins from 3T3-L1 adipocytes. 3T3-L1 preadipocytes were differentiated into mature adipocytes and then the cells were left in serum-free medium. The supernatant was filtrated and dialyzed. Lyophilized secretome was fractionated by two different methods, 1-D SDS PAGE and RP-FPLC. The tryptic peptides from the gel slices and the FPLC fractions were analyzed by nanoLC/ESI-MS/MS. We identified a total of 303 identical proteins from two methods, 251 proteins from 1-D gel and 184 proteins from RP-FPLC. 86 of them were listed as a secretory protein Finally, we identified many known or unknown secreted proteins existed in the low level including adiponectin, angiotensinogen, bone morphogenetic protein-1 (BMP-1), macrophage migration inhibitory factor (MIF), insulin like growth factor-II (IGF-II), interleukin-6 (IL-6), follistatin-related protein-1, minecan, and resistin. The existence of some of secreted proteins has been confirmed in RNA level. This proteomic experiment is useful for the intensive screening of secretory proteins in many kinds of other cells.