DOI QR코드

DOI QR Code

The Protein Kinase Activity of Phytochrome Functions in Regulating Plant Light Signaling

  • Shin, Ah-Young (Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University) ;
  • Han, Yun-Jeong (Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University) ;
  • Song, Pill-Soon (Faculty of Biotechnology and Subtropical Horticulture Research Institute, Cheju National University) ;
  • Kim, Jeong-Il (Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University)
  • Received : 2013.06.17
  • Accepted : 2013.07.30
  • Published : 2013.06.01

Abstract

Plant phytochromes, molecular light switches that regulate various aspects of plant growth and development, are known as autophosphorylating serine/threonine kinases. Although recent studies reveal that phytochrome autophosphorylation plays an important role in the regulation of phytochrome signaling through the control of phyA protein stability, the in vivo functional roles of phytochrome kinase activity in plant light signaling are largely unknown. Thus, it is necessary to investigate the detailed function of phytochrome as a protein kinase, which might include mapping of kinase domain on the phytochrome molecule, searching for substrates that could be phosphorylated by phyA, and in vivo functional analysis of the kinase activity with phytochrome mutants displaying reduced kinase activity. Our recent studies reveal that the kinase activity of phytochrome plays a positive role in plant light signaling. Therefore, we highlight the current knowledge about the functional roles of phytochrome kinase activity in the light signal transduction of plants, based on our recent results.

Keywords

References

  1. Rockwell, N. C.; Lagarias, J. C. Plant Cell 2006, 18, 4-14. https://doi.org/10.1105/tpc.105.038513
  2. Bae, G.; Choi, G. Ann. Rev. Plant Biol. 2008, 59, 281-311. https://doi.org/10.1146/annurev.arplant.59.032607.092859
  3. Mathews, S.; Sharrock, R. A. Mol. Biol. Evol. 1996, 13, 1141-1150. https://doi.org/10.1093/oxfordjournals.molbev.a025677
  4. Quail, P. H. Nat. Rev. Mol. Cell Biol. 2002, 3, 85-93. https://doi.org/10.1038/nrm728
  5. Chen, M.; Chory, J.; Fankhauser, C. Annu. Rev. Genet. 2004, 38, 87-117. https://doi.org/10.1146/annurev.genet.38.072902.092259
  6. Nagatani, A. Curr. Opin. Plant Biol. 2004, 7, 708-711. https://doi.org/10.1016/j.pbi.2004.09.010
  7. Fankhauser, C.; Chen, M. Trends Plant Sci. 2008, 13, 596-601. https://doi.org/10.1016/j.tplants.2008.08.007
  8. Jiao, Y.; Lau, O. S.; Deng, X. W. Nat. Rev. Genet. 2007, 8, 217-230.
  9. Leivar, P.; Quail, P. H. Trends Plant Sci. 2011, 16, 19-28.
  10. Hoecker, U. Curr. Opin. Plant Biol. 2005, 8, 469-476. https://doi.org/10.1016/j.pbi.2005.07.002
  11. Henriques, R.; Jang, I. C.; Chua, N. H. Curr. Opin. Plant Biol. 2009, 12, 49-56. https://doi.org/10.1016/j.pbi.2008.10.009
  12. Kim, J. I.; Park, J. E.; Zarate, X.; Song, P. S. Photochem. Photobiol. Sci. 2005, 4, 681-687. https://doi.org/10.1039/b417912a
  13. Lorrain, S.; Genoud, T.; Fankhauser, C. Curr. Opin. Plant Biol. 2006, 9, 509-514. https://doi.org/10.1016/j.pbi.2006.07.013
  14. Ni, M.; Tepperman, J. M.; Quail, P. H. Cell 1998, 95, 657-667. https://doi.org/10.1016/S0092-8674(00)81636-0
  15. Choi, G.; Yi, H.; Lee, J.; Kwon, Y. K.; Soh, M. S.; Shin, B.; Luka, Z.; Hahn, T. R.; Song, P. S. Nature 1999, 401, 610-613. https://doi.org/10.1038/44176
  16. Fankhauser, C.; Yeh, K. C.; Lagarias, J. C.; Zhang, H.; Elich, T. D.; Chory, J. Science 1999, 284, 1539-1541. https://doi.org/10.1126/science.284.5419.1539
  17. Ryu, J. S.; Kim, J. I.; Kunkel, T.; Kim, B. C.; Cho, D. S.; Hong, S. H.; Kim, S. H.; Fernandez, A. P.; Kim, Y.; Alonso, J. M.; Ecker, J. R.; Nagy, F.; Lim, P. O.; Song, P. S.; Schafer, E.; Nam, H. G. Cell 2005, 120, 395-406. https://doi.org/10.1016/j.cell.2004.12.019
  18. Al-Sady, B.; Ni, W.; Kircher, S.; Schafer, E.; Quail, P. H. Mol. Cell 2006, 23, 439-446. https://doi.org/10.1016/j.molcel.2006.06.011
  19. Shen, Y.; Khanna, R.; Carle, C. M.; Quail, P. H. Plant Physiol. 2007, 145, 1043-1051. https://doi.org/10.1104/pp.107.105601
  20. Shen, Y.; Zhou, Z.; Feng, S.; Li, J.; Tan-Wilson, A.; Qu, L. J.; Wang, H.; Deng, X. W. Plant Cell 2009, 21, 494-506. https://doi.org/10.1105/tpc.108.061259
  21. Yeh, K. C.; Lagarias, J. C. Pro. Natl. Acad. Sci. U. S. A. 1998, 95, 13976-13981. https://doi.org/10.1073/pnas.95.23.13976
  22. Han, Y. J.; Kim, H. S.; Kim, Y. M.; Shin, A. Y.; Lee, S. S.; Bhoo, S. H.; Song, P. S.; Kim, J. I. Plant Cell Physiol. 2010, 51, 596-609. https://doi.org/10.1093/pcp/pcq025
  23. Kim, J. I.; Shen, Y.; Han, Y. J.; Park, J. E.; Kirchenbauer, D.; Soh, M. S.; Nagy, F.; Schafer, E.; Song, P. S. Plant Cell 2004, 16, 2629-2640. https://doi.org/10.1105/tpc.104.023879
  24. Han, Y. J.; Kim, H. S.; Song, P. S.; Kim, J. I. Plant Signal Behav. 2010, 5, 868-871. https://doi.org/10.4161/psb.5.7.11898
  25. Kim, D. H.; Kang, J. G.; Yang, S. S.; Chung, K. S.; Song, P. S.; Park, C. M. Plant Cell 2002, 14, 3043-3056. https://doi.org/10.1105/tpc.005306
  26. Phee, B. K.; Kim, J. I.; Shin, D. H.; Yoo, J.; Park, K. J.; Han, Y. J.; Kwon, Y. K.; Cho, M. H.; Jeon, J. S.; Bhoo, S. H.; Hahn, T. R. Biochem. J. 2008, 415, 247-255. https://doi.org/10.1042/BJ20071555
  27. Hardtke, C. S.; Gohda, K.; Osterlund, M. T.; Oyama, T.; Okada, K.; Deng, X. W. EMBO J. 2000, 19, 4997-5006. https://doi.org/10.1093/emboj/19.18.4997
  28. Holm, M.; Ma, L. G.; Qu, L. J.; Deng, X. W. Genes Dev. 2002, 16, 1247-1259. https://doi.org/10.1101/gad.969702