• Title/Summary/Keyword: University research

Search Result 200,861, Processing Time 0.206 seconds

A Study on Knowledge Entity Extraction Method for Individual Stocks Based on Neural Tensor Network (뉴럴 텐서 네트워크 기반 주식 개별종목 지식개체명 추출 방법에 관한 연구)

  • Yang, Yunseok;Lee, Hyun Jun;Oh, Kyong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.25-38
    • /
    • 2019
  • Selecting high-quality information that meets the interests and needs of users among the overflowing contents is becoming more important as the generation continues. In the flood of information, efforts to reflect the intention of the user in the search result better are being tried, rather than recognizing the information request as a simple string. Also, large IT companies such as Google and Microsoft focus on developing knowledge-based technologies including search engines which provide users with satisfaction and convenience. Especially, the finance is one of the fields expected to have the usefulness and potential of text data analysis because it's constantly generating new information, and the earlier the information is, the more valuable it is. Automatic knowledge extraction can be effective in areas where information flow is vast, such as financial sector, and new information continues to emerge. However, there are several practical difficulties faced by automatic knowledge extraction. First, there are difficulties in making corpus from different fields with same algorithm, and it is difficult to extract good quality triple. Second, it becomes more difficult to produce labeled text data by people if the extent and scope of knowledge increases and patterns are constantly updated. Third, performance evaluation is difficult due to the characteristics of unsupervised learning. Finally, problem definition for automatic knowledge extraction is not easy because of ambiguous conceptual characteristics of knowledge. So, in order to overcome limits described above and improve the semantic performance of stock-related information searching, this study attempts to extract the knowledge entity by using neural tensor network and evaluate the performance of them. Different from other references, the purpose of this study is to extract knowledge entity which is related to individual stock items. Various but relatively simple data processing methods are applied in the presented model to solve the problems of previous researches and to enhance the effectiveness of the model. From these processes, this study has the following three significances. First, A practical and simple automatic knowledge extraction method that can be applied. Second, the possibility of performance evaluation is presented through simple problem definition. Finally, the expressiveness of the knowledge increased by generating input data on a sentence basis without complex morphological analysis. The results of the empirical analysis and objective performance evaluation method are also presented. The empirical study to confirm the usefulness of the presented model, experts' reports about individual 30 stocks which are top 30 items based on frequency of publication from May 30, 2017 to May 21, 2018 are used. the total number of reports are 5,600, and 3,074 reports, which accounts about 55% of the total, is designated as a training set, and other 45% of reports are designated as a testing set. Before constructing the model, all reports of a training set are classified by stocks, and their entities are extracted using named entity recognition tool which is the KKMA. for each stocks, top 100 entities based on appearance frequency are selected, and become vectorized using one-hot encoding. After that, by using neural tensor network, the same number of score functions as stocks are trained. Thus, if a new entity from a testing set appears, we can try to calculate the score by putting it into every single score function, and the stock of the function with the highest score is predicted as the related item with the entity. To evaluate presented models, we confirm prediction power and determining whether the score functions are well constructed by calculating hit ratio for all reports of testing set. As a result of the empirical study, the presented model shows 69.3% hit accuracy for testing set which consists of 2,526 reports. this hit ratio is meaningfully high despite of some constraints for conducting research. Looking at the prediction performance of the model for each stocks, only 3 stocks, which are LG ELECTRONICS, KiaMtr, and Mando, show extremely low performance than average. this result maybe due to the interference effect with other similar items and generation of new knowledge. In this paper, we propose a methodology to find out key entities or their combinations which are necessary to search related information in accordance with the user's investment intention. Graph data is generated by using only the named entity recognition tool and applied to the neural tensor network without learning corpus or word vectors for the field. From the empirical test, we confirm the effectiveness of the presented model as described above. However, there also exist some limits and things to complement. Representatively, the phenomenon that the model performance is especially bad for only some stocks shows the need for further researches. Finally, through the empirical study, we confirmed that the learning method presented in this study can be used for the purpose of matching the new text information semantically with the related stocks.

Study on Fabric and Embroidery of Possessed by Dong-A University Museum (동아대학교박물관 소장 <초충도수병>의 직물과 자수 연구)

  • Sim, Yeon-ok
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.3
    • /
    • pp.230-250
    • /
    • 2013
  • possessed by Dong-A University Museum is designated as Treasure No. 595, and has been known for a more exquisite, delicate and realistic expression and a colorful three-dimensional structure compared to the 'grass and insect painting' work and its value in art history. However, it has not been analyzed and studied in fabric craft despite it being an embroidered work. This study used scientific devices to examine and analyze the Screen's fabric, thread colors, and embroidery techniques to clarify its patterns and fabric craft characteristics for its value in the history of fabric craft. As a result, consists of eight sides and its subject matters and composition are similar to those of the general paintings of grass and insects. The patterns on each side of the 'grass and insect painting' include cucumber, cockscomb, day lily, balsam pear, gillyflower, watermelon, eggplant, and chrysanthemums from the first side. Among these flowers, the balsam pear is a special material not found in the existing paintings of grass and insect. The eighth side only has the chrysanthemums with no insects and reptiles, making it different from the typical forms of the paintings of grass and insect. The fabric of the Screen uses black that is not seen in other decorative embroideries to emphasize and maximize various colors of threads. The fabric used the weave structure of 5-end satin called Gong Dan [non-patterned satin]. The threads used extremely slightly twisted threads that are incidentally twisted. Some threads use one color, while other threads use two or mixed colors in combination for three-dimensional expressions. Because the threads are severely deterioration and faded, it is impossible to know the original colors, but the most frequently used colors are yellow to green and other colors remaining relatively prominently are blue, grown, and violet. The colors of day lily, gillyflower, and strawberries are currently remaining as reddish yellow, but it is anticipated that they were originally orange and red considering the existing paintings of grass and insects. The embroidery technique was mostly surface satin stitch to fill the surfaces. This shows the traditional women's wisdom to reduce the waste of color threads. Satin stitch is a relatively simple embroidery technique for decorating a surface, but it uses various color threads and divides the surfaces for combined vertical, horizontal, and diagonal stitches or for the combination of long and short stitches for various textures and the sense of volume. The bodies of insects use the combination of buttonhole stitch, outline stitch, and satin stitch for three-dimensional expressions, but the use of buttonhole stitch is particularly noticeable. In addition to that, decorative stitches were used to give volume to the leaves and surface pine needle stitches were done on the scouring rush to add more realistic texture. Decorative stitches were added on top of gillyflower, strawberries, and cucumbers for a more delicate touch. is valuable in the history of paintings and art and bears great importance in the history of Korean embroidery as it uses outstanding technique and colors of Korea to express the Shin Sa-im-dang's 'Grass and Insect Painting'.

Query-based Answer Extraction using Korean Dependency Parsing (의존 구문 분석을 이용한 질의 기반 정답 추출)

  • Lee, Dokyoung;Kim, Mintae;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.161-177
    • /
    • 2019
  • In this paper, we study the performance improvement of the answer extraction in Question-Answering system by using sentence dependency parsing result. The Question-Answering (QA) system consists of query analysis, which is a method of analyzing the user's query, and answer extraction, which is a method to extract appropriate answers in the document. And various studies have been conducted on two methods. In order to improve the performance of answer extraction, it is necessary to accurately reflect the grammatical information of sentences. In Korean, because word order structure is free and omission of sentence components is frequent, dependency parsing is a good way to analyze Korean syntax. Therefore, in this study, we improved the performance of the answer extraction by adding the features generated by dependency parsing analysis to the inputs of the answer extraction model (Bidirectional LSTM-CRF). The process of generating the dependency graph embedding consists of the steps of generating the dependency graph from the dependency parsing result and learning the embedding of the graph. In this study, we compared the performance of the answer extraction model when inputting basic word features generated without the dependency parsing and the performance of the model when inputting the addition of the Eojeol tag feature and dependency graph embedding feature. Since dependency parsing is performed on a basic unit of an Eojeol, which is a component of sentences separated by a space, the tag information of the Eojeol can be obtained as a result of the dependency parsing. The Eojeol tag feature means the tag information of the Eojeol. The process of generating the dependency graph embedding consists of the steps of generating the dependency graph from the dependency parsing result and learning the embedding of the graph. From the dependency parsing result, a graph is generated from the Eojeol to the node, the dependency between the Eojeol to the edge, and the Eojeol tag to the node label. In this process, an undirected graph is generated or a directed graph is generated according to whether or not the dependency relation direction is considered. To obtain the embedding of the graph, we used Graph2Vec, which is a method of finding the embedding of the graph by the subgraphs constituting a graph. We can specify the maximum path length between nodes in the process of finding subgraphs of a graph. If the maximum path length between nodes is 1, graph embedding is generated only by direct dependency between Eojeol, and graph embedding is generated including indirect dependencies as the maximum path length between nodes becomes larger. In the experiment, the maximum path length between nodes is adjusted differently from 1 to 3 depending on whether direction of dependency is considered or not, and the performance of answer extraction is measured. Experimental results show that both Eojeol tag feature and dependency graph embedding feature improve the performance of answer extraction. In particular, considering the direction of the dependency relation and extracting the dependency graph generated with the maximum path length of 1 in the subgraph extraction process in Graph2Vec as the input of the model, the highest answer extraction performance was shown. As a result of these experiments, we concluded that it is better to take into account the direction of dependence and to consider only the direct connection rather than the indirect dependence between the words. The significance of this study is as follows. First, we improved the performance of answer extraction by adding features using dependency parsing results, taking into account the characteristics of Korean, which is free of word order structure and omission of sentence components. Second, we generated feature of dependency parsing result by learning - based graph embedding method without defining the pattern of dependency between Eojeol. Future research directions are as follows. In this study, the features generated as a result of the dependency parsing are applied only to the answer extraction model in order to grasp the meaning. However, in the future, if the performance is confirmed by applying the features to various natural language processing models such as sentiment analysis or name entity recognition, the validity of the features can be verified more accurately.

How to improve the accuracy of recommendation systems: Combining ratings and review texts sentiment scores (평점과 리뷰 텍스트 감성분석을 결합한 추천시스템 향상 방안 연구)

  • Hyun, Jiyeon;Ryu, Sangyi;Lee, Sang-Yong Tom
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.219-239
    • /
    • 2019
  • As the importance of providing customized services to individuals becomes important, researches on personalized recommendation systems are constantly being carried out. Collaborative filtering is one of the most popular systems in academia and industry. However, there exists limitation in a sense that recommendations were mostly based on quantitative information such as users' ratings, which made the accuracy be lowered. To solve these problems, many studies have been actively attempted to improve the performance of the recommendation system by using other information besides the quantitative information. Good examples are the usages of the sentiment analysis on customer review text data. Nevertheless, the existing research has not directly combined the results of the sentiment analysis and quantitative rating scores in the recommendation system. Therefore, this study aims to reflect the sentiments shown in the reviews into the rating scores. In other words, we propose a new algorithm that can directly convert the user 's own review into the empirically quantitative information and reflect it directly to the recommendation system. To do this, we needed to quantify users' reviews, which were originally qualitative information. In this study, sentiment score was calculated through sentiment analysis technique of text mining. The data was targeted for movie review. Based on the data, a domain specific sentiment dictionary is constructed for the movie reviews. Regression analysis was used as a method to construct sentiment dictionary. Each positive / negative dictionary was constructed using Lasso regression, Ridge regression, and ElasticNet methods. Based on this constructed sentiment dictionary, the accuracy was verified through confusion matrix. The accuracy of the Lasso based dictionary was 70%, the accuracy of the Ridge based dictionary was 79%, and that of the ElasticNet (${\alpha}=0.3$) was 83%. Therefore, in this study, the sentiment score of the review is calculated based on the dictionary of the ElasticNet method. It was combined with a rating to create a new rating. In this paper, we show that the collaborative filtering that reflects sentiment scores of user review is superior to the traditional method that only considers the existing rating. In order to show that the proposed algorithm is based on memory-based user collaboration filtering, item-based collaborative filtering and model based matrix factorization SVD, and SVD ++. Based on the above algorithm, the mean absolute error (MAE) and the root mean square error (RMSE) are calculated to evaluate the recommendation system with a score that combines sentiment scores with a system that only considers scores. When the evaluation index was MAE, it was improved by 0.059 for UBCF, 0.0862 for IBCF, 0.1012 for SVD and 0.188 for SVD ++. When the evaluation index is RMSE, UBCF is 0.0431, IBCF is 0.0882, SVD is 0.1103, and SVD ++ is 0.1756. As a result, it can be seen that the prediction performance of the evaluation point reflecting the sentiment score proposed in this paper is superior to that of the conventional evaluation method. In other words, in this paper, it is confirmed that the collaborative filtering that reflects the sentiment score of the user review shows superior accuracy as compared with the conventional type of collaborative filtering that only considers the quantitative score. We then attempted paired t-test validation to ensure that the proposed model was a better approach and concluded that the proposed model is better. In this study, to overcome limitations of previous researches that judge user's sentiment only by quantitative rating score, the review was numerically calculated and a user's opinion was more refined and considered into the recommendation system to improve the accuracy. The findings of this study have managerial implications to recommendation system developers who need to consider both quantitative information and qualitative information it is expect. The way of constructing the combined system in this paper might be directly used by the developers.

Development of a Stock Trading System Using M & W Wave Patterns and Genetic Algorithms (M&W 파동 패턴과 유전자 알고리즘을 이용한 주식 매매 시스템 개발)

  • Yang, Hoonseok;Kim, Sunwoong;Choi, Heung Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.63-83
    • /
    • 2019
  • Investors prefer to look for trading points based on the graph shown in the chart rather than complex analysis, such as corporate intrinsic value analysis and technical auxiliary index analysis. However, the pattern analysis technique is difficult and computerized less than the needs of users. In recent years, there have been many cases of studying stock price patterns using various machine learning techniques including neural networks in the field of artificial intelligence(AI). In particular, the development of IT technology has made it easier to analyze a huge number of chart data to find patterns that can predict stock prices. Although short-term forecasting power of prices has increased in terms of performance so far, long-term forecasting power is limited and is used in short-term trading rather than long-term investment. Other studies have focused on mechanically and accurately identifying patterns that were not recognized by past technology, but it can be vulnerable in practical areas because it is a separate matter whether the patterns found are suitable for trading. When they find a meaningful pattern, they find a point that matches the pattern. They then measure their performance after n days, assuming that they have bought at that point in time. Since this approach is to calculate virtual revenues, there can be many disparities with reality. The existing research method tries to find a pattern with stock price prediction power, but this study proposes to define the patterns first and to trade when the pattern with high success probability appears. The M & W wave pattern published by Merrill(1980) is simple because we can distinguish it by five turning points. Despite the report that some patterns have price predictability, there were no performance reports used in the actual market. The simplicity of a pattern consisting of five turning points has the advantage of reducing the cost of increasing pattern recognition accuracy. In this study, 16 patterns of up conversion and 16 patterns of down conversion are reclassified into ten groups so that they can be easily implemented by the system. Only one pattern with high success rate per group is selected for trading. Patterns that had a high probability of success in the past are likely to succeed in the future. So we trade when such a pattern occurs. It is a real situation because it is measured assuming that both the buy and sell have been executed. We tested three ways to calculate the turning point. The first method, the minimum change rate zig-zag method, removes price movements below a certain percentage and calculates the vertex. In the second method, high-low line zig-zag, the high price that meets the n-day high price line is calculated at the peak price, and the low price that meets the n-day low price line is calculated at the valley price. In the third method, the swing wave method, the high price in the center higher than n high prices on the left and right is calculated as the peak price. If the central low price is lower than the n low price on the left and right, it is calculated as valley price. The swing wave method was superior to the other methods in the test results. It is interpreted that the transaction after checking the completion of the pattern is more effective than the transaction in the unfinished state of the pattern. Genetic algorithms(GA) were the most suitable solution, although it was virtually impossible to find patterns with high success rates because the number of cases was too large in this simulation. We also performed the simulation using the Walk-forward Analysis(WFA) method, which tests the test section and the application section separately. So we were able to respond appropriately to market changes. In this study, we optimize the stock portfolio because there is a risk of over-optimized if we implement the variable optimality for each individual stock. Therefore, we selected the number of constituent stocks as 20 to increase the effect of diversified investment while avoiding optimization. We tested the KOSPI market by dividing it into six categories. In the results, the portfolio of small cap stock was the most successful and the high vol stock portfolio was the second best. This shows that patterns need to have some price volatility in order for patterns to be shaped, but volatility is not the best.

Different Look, Different Feel: Social Robot Design Evaluation Model Based on ABOT Attributes and Consumer Emotions (각인각색, 각봇각색: ABOT 속성과 소비자 감성 기반 소셜로봇 디자인평가 모형 개발)

  • Ha, Sangjip;Lee, Junsik;Yoo, In-Jin;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.2
    • /
    • pp.55-78
    • /
    • 2021
  • Tosolve complex and diverse social problems and ensure the quality of life of individuals, social robots that can interact with humans are attracting attention. In the past, robots were recognized as beings that provide labor force as they put into industrial sites on behalf of humans. However, the concept of today's robot has been extended to social robots that coexist with humans and enable social interaction with the advent of Smart technology, which is considered an important driver in most industries. Specifically, there are service robots that respond to customers, the robots that have the purpose of edutainment, and the emotionalrobots that can interact with humans intimately. However, popularization of robots is not felt despite the current information environment in the modern ICT service environment and the 4th industrial revolution. Considering social interaction with users which is an important function of social robots, not only the technology of the robots but also other factors should be considered. The design elements of the robot are more important than other factors tomake consumers purchase essentially a social robot. In fact, existing studies on social robots are at the level of proposing "robot development methodology" or testing the effects provided by social robots to users in pieces. On the other hand, consumer emotions felt from the robot's appearance has an important influence in the process of forming user's perception, reasoning, evaluation and expectation. Furthermore, it can affect attitude toward robots and good feeling and performance reasoning, etc. Therefore, this study aims to verify the effect of appearance of social robot and consumer emotions on consumer's attitude toward social robot. At this time, a social robot design evaluation model is constructed by combining heterogeneous data from different sources. Specifically, the three quantitative indicator data for the appearance of social robots from the ABOT Database is included in the model. The consumer emotions of social robot design has been collected through (1) the existing design evaluation literature and (2) online buzzsuch as product reviews and blogs, (3) qualitative interviews for social robot design. Later, we collected the score of consumer emotions and attitudes toward various social robots through a large-scale consumer survey. First, we have derived the six major dimensions of consumer emotions for 23 pieces of detailed emotions through dimension reduction methodology. Then, statistical analysis was performed to verify the effect of derived consumer emotionson attitude toward social robots. Finally, the moderated regression analysis was performed to verify the effect of quantitatively collected indicators of social robot appearance on the relationship between consumer emotions and attitudes toward social robots. Interestingly, several significant moderation effects were identified, these effects are visualized with two-way interaction effect to interpret them from multidisciplinary perspectives. This study has theoretical contributions from the perspective of empirically verifying all stages from technical properties to consumer's emotion and attitudes toward social robots by linking the data from heterogeneous sources. It has practical significance that the result helps to develop the design guidelines based on consumer emotions in the design stage of social robot development.

A Study of the Impractical Area and Boundary of an Outer Royal Garden "Hamchunwon" Attached to Gyeonghuigung Palace (경희궁 별원(別苑) 함춘원의 실지(實地) 경역 고찰)

  • Jung, Woo-Jin;Hong, Hyeon-Do;So, Hyun-Su
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.40 no.1
    • /
    • pp.26-42
    • /
    • 2022
  • The purpose of this study is to examine and understand the area and the original outer boundaries of Hamchunwon(含春苑), which was the outer royal garden of Gyeonghuigung Palace, which existed before the site of the Russian legation. The results of the study are as follows. First, examining the 3 types of drawings prepared for securing the Russian legation's site and constructing a new building, it was confirmed that two low peaks, which appear to be the original terrain of Hamchunwon, existed in the north and south directions inside the site. According to the initial plan of the of the legation's site, it appears that the entrance of the legation building is connected to the Saemunan-ro in the northwest. However, according to the report made at the time when the Russian temporary minister Veber purchased the legation's site, it was recorded that the site already had a narrow entrance and a dirt road in place, and hence, it was connected to Saemunan-ro. This fact makes it possible to learn that the line of movement for officials and the original gate were located to the northwest of the site planned as the entrance of the legation building towards Hamchunwon. Second, the site was created by cutting the top of the high hill at the time of the construction of the legation building, and as a result, a two tiered staircase typed terrace was built. The ground on which the main building and the secretary's building, etc., were erected was made by cutting the highest peak and solidifying it flat, and a large quantity of soil was used for grading. In the case of the northern area of the main building, the traces of leveling the terrain by cutting the mountains are apparent, and an observation typed garden with a walking path and pavilion was formed by utilizing the physical environment equipped with an easy view. This may be considered as a use which is consistent with the topographical conditions of creating an outer royal garden to block the civilian views on a high terrain overlooking the palace. Third, Hamchunwon's fences were partially exposed in the photos from the 1880s through the 1890s, which demonstrate the spatial changes made around the US, UK, and the Russian legations. As a result of the photo analysis performed, Hamchunwon occupies the northern area of the Russian legation's site, and it is estimated that the north, west, and east walls of the legation resembled those of Hamchunwon. The area to the south of the Russian legation was originally a place made available for civilian houses, and it was possible to examine the circumstances of purchasing dozens of civilian houses and farmlands according to various materials. Fourth, Hamchunwon, which was formed as the outer royal garden of Gyeongdeokgung Palace of Lord Gwanghaegun, lost its sense of place as an outer royal garden when the entire building of Gyeonghuigung Palace was torn down and used as a construction members during the reconstruction of Gyeongbokgung Palace, and faded away as the site was sold to Russia around 1885. The area where Hamchunwon used to be located transformed into a core space of the Russian legation where the main building and garden were located after the construction of the new building. Hence, Hamchunwon, which was limited to the northern area of the Russian legation, does not carry the temporal and spatial context with Gyeongungung Palace and Seonwonjeon which were constructed after 1897, and it is determined that the view of Seonwonjeon as Baehoorim or Baegyeongrim is not valid.

A Study on Lee, Man-Bu's Thought of Space and Siksanjeongsa with Special Reference of Prototype Landscape Analyzing Nuhangdo(陋巷圖) and Nuhangnok(陋巷錄) (누항도(陋巷圖)와 누항록(陋巷錄)을 통해 본 이만부의 공간철학과 식산정사의 원형경관)

  • Kahng, Byung-Seon;Lee, Seung-Yeon;Shin, Sang-Sup;Rho, Jae-Hyun
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.39 no.2
    • /
    • pp.15-28
    • /
    • 2021
  • 'Cheonunjeongsa (天雲精舍)', designated as Gyeongsangbukdo Folklore Cultural Property No. 76, is a Siksanjeongsa built in 1700 by Manbu Lee Shiksan. In this study, we investigate the life and perspective of Manbu Lee in relation to Siksanjeongsa, and estimate the feng shui location, territoriality, and original landscape by analyzing 「Nuhangnok」 and 「Nuhando」, the results of his political management. The following results were derived by examining the philosophy that the scholar wanted to include in his space. First, Manbu Lee Shiksan was a representative hermit-type confucian scholar in the late Joseon Dynasty. 'Siksan', the name of the government official and the nickname of Manbu Lee, is derived from the mountain behind the village, and he wanted to rest in the four areas of thought(思), body(躬), speech(言), and friendship(交). During the difficult years of King Sukjong, Lee Manbu of a Namin family expressed his will to seclude through the title 'Siksan'. Second, There is a high possibility of restoration close to the original. Manbu Lee recorded the location of Siksanjeongsa, spatial structure, buildings and landscape facilities, trees, surrounding landscape, and usage behaviors in 「Nuhangnok」, and left a book of 《Nuhangdo》. Third, Manbu Lee refers to the feng shui geography view that Oenogok is closed in two when viewed from the outside, but is cozy and deep and can be seen from a far when entering inside. The whole village of Nogok was called Siksanjeongsa, which means through the name. It can be seen that the area was formed and expanded. Fourth, the spatial composition of Siksanjeongsa can be divided into a banquet space, an education space, a support space, a rest space, a vegetable and an herbal garden. The banquet space composed of Dang, Lu, and Yeonji is a personal space where Manbu Lee, who thinks about the unity of the heavenly people, the virtue of the gentleman, and humanity, is a place for lectures and a place to live. Fifth, Yangjeongjae area is an educational space, and Yangjeongjae is a name taken from the main character Monggwa, and it is a name that prayed for young students to grow brightly and academically. Sixth, the support space composed of Ganjijeong, Gobandae, and Sehandan is a place where the forested areas in the innermost part of Siksanjeongsa are cleared and a small pavilion is built using natural standing stones and pine trees as a folding screen. The virtue and grace of stopping. It contains the meaning of leisure and the wisdom of a gentleman. Seventh, outside the wall of Siksanjeongsa, across the eastern stream, an altar was built in a place with many old trees, called Yeonggwisa, and a place of rest was made by piling up an oddly shaped stone and planting flowers. Eighth, Manbu Lee, who knew the effects of vegetables and medicinal herbs in detail like the scholars of the Joseon Dynasty, cultivated a vegetable garden and an herbal garden in Jeongsa. Ninth, it can be seen that Lee Manbu realized the Neo-Confucian utopia in his political life by giving meaning to each space of Siksanjeongsa by naming buildings and landscaping facilities and planting them according to ancient events.

Energy and nutrition evaluation per single serving package for each type of home meal replacement rice (가정간편식 밥류의 유형별 1회 제공 포장량 당 에너지 및 영양성분 함량 평가)

  • Choi, In-Young;Yeon, Jee-Young;Kim, Mi-Hyun
    • Journal of Nutrition and Health
    • /
    • v.55 no.4
    • /
    • pp.476-491
    • /
    • 2022
  • Purpose: The purpose of this study was to evaluate the energy and nutrient contents of home meal replacement (HMR) rice products per single serving package based on nutrition labels. Methods: The market research was conducted from February to July 2021 on products sold on the internet, at convenience stores, etc. A total of 406 products were investigated. The products were divided into the following 6 classifications: instant rice (n = 45), cup rice (n = 64), frozen rice (n = 188), rice bowls with toppings (n = 32), gimbap (n = 38), and triangular gimbap (n = 39). Results: The mean packaging weight per serving was the highest in the rice bowl with toppings at 297.1 g, followed by cup rice (264.0 g), frozen rice (239.5 g), gimbap (230.2 g), instant rice (193.4 g), and triangular gimbap (121.6 g) (p < 0.001). The energy per serving package for the rice bowl with toppings was significantly the highest at 496.0 kcal (p < 0.001). The sodium content per serving package of gimbap was the highest at 1,021.8 mg and that of the instant rice was lowest at 37.4 mg (p < 0.001). The price per serving package of the rice bowl with toppings at 4,333.8 won was the highest. The contribution to the daily nutritional value per serving package of all types of HMR rice products surveyed showed an average range of 10-25% for energy, 11-22% for carbohydrates, and 2-51% for sodium. Conclusion: These results indicate the energy and nutrient contents of HMR rice products, vary by type. Therefore, consumers should review the nutrition labeling to select an appropriate HMR rice product based on their intended consumption.

Effects of climate change on biodiversity and measures for them (생물다양성에 대한 기후변화의 영향과 그 대책)

  • An, Ji Hong;Lim, Chi Hong;Jung, Song Hie;Kim, A Reum;Lee, Chang Seok
    • Journal of Wetlands Research
    • /
    • v.18 no.4
    • /
    • pp.474-480
    • /
    • 2016
  • In this study, formation background of biodiversity and its changes in the process of geologic history, and effects of climate change on biodiversity and human were discussed and the alternatives to reduce the effects of climate change were suggested. Biodiversity is 'the variety of life' and refers collectively to variation at all levels of biological organization. That is, biodiversity encompasses the genes, species and ecosystems and their interactions. It provides the basis for ecosystems and the services on which all people fundamentally depend. Nevertheless, today, biodiversity is increasingly threatened, usually as the result of human activity. Diverse organisms on earth, which are estimated as 10 to 30 million species, are the result of adaptation and evolution to various environments through long history of four billion years since the birth of life. Countlessly many organisms composing biodiversity have specific characteristics, respectively and are interrelated with each other through diverse relationship. Environment of the earth, on which we live, has also created for long years through extensive relationship and interaction of those organisms. We mankind also live through interrelationship with the other organisms as an organism. The man cannot lives without the other organisms around him. Even though so, human beings accelerate mean extinction rate about 1,000 times compared with that of the past for recent several years. We have to conserve biodiversity for plentiful life of our future generation and are responsible for sustainable use of biodiversity. Korea has achieved faster economic growth than any other countries in the world. On the other hand, Korea had hold originally rich biodiversity as it is not only a peninsula country stretched lengthily from north to south but also three sides are surrounded by sea. But they disappeared increasingly in the process of fast economic growth. Korean people have created specific Korean culture by coexistence with nature through a long history of agriculture, forestry, and fishery. But in recent years, the relationship between Korean and nature became far in the processes of introduction of western culture and development of science and technology and specific natural feature born from harmonious combination between nature and culture disappears more and more. Population of Korea is expected to be reduced as contrasted with world population growing continuously. At this time, we need to restore biodiversity damaged in the processes of rapid population growth and economic development in concert with recovery of natural ecosystem due to population decrease. There were grand extinction events of five times since the birth of life on the earth. Modern extinction is very rapid and human activity is major causal factor. In these respects, it is distinguished from the past one. Climate change is real. Biodiversity is very vulnerable to climate change. If organisms did not find a survival method such as 'adaptation through evolution', 'movement to the other place where they can exist', and so on in the changed environment, they would extinct. In this respect, if climate change is continued, biodiversity should be damaged greatly. Furthermore, climate change would also influence on human life and socio-economic environment through change of biodiversity. Therefore, we need to grasp the effects that climate change influences on biodiversity more actively and further to prepare the alternatives to reduce the damage. Change of phenology, change of distribution range including vegetation shift, disharmony of interaction among organisms, reduction of reproduction and growth rates due to odd food chain, degradation of coral reef, and so on are emerged as the effects of climate change on biodiversity. Expansion of infectious disease, reduction of food production, change of cultivation range of crops, change of fishing ground and time, and so on appear as the effects on human. To solve climate change problem, first of all, we need to mitigate climate change by reducing discharge of warming gases. But even though we now stop discharge of warming gases, climate change is expected to be continued for the time being. In this respect, preparing adaptive strategy of climate change can be more realistic. Continuous monitoring to observe the effects of climate change on biodiversity and establishment of monitoring system have to be preceded over all others. Insurance of diverse ecological spaces where biodiversity can establish, assisted migration, and establishment of horizontal network from south to north and vertical one from lowland to upland ecological networks could be recommended as the alternatives to aid adaptation of biodiversity to the changing climate.