• Title/Summary/Keyword: Universal Software

Search Result 175, Processing Time 0.042 seconds

Effects of primers on the microtensile bond strength of resin cements to cobalt-chromium alloy (레진 시멘트와 코발트 크롬 합금의 미세인장결합강도에 다양한 프라이머들이 미치는 영향)

  • Jung, Hong-Taek;Campana, Shiela A.;Park, Jin-Hong;Shin, Joo-Hee;Lee, Jeong-Yol
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.2
    • /
    • pp.95-101
    • /
    • 2019
  • Purpose: The aim of this study is to evaluate the effects of various primers on the microtensile bond strength (${\mu}TBS$) of resin cements to cobalt-chromium (Co-Cr) dental casting alloy. Materials and methods: Four adhesive primers (Universal primer, Metal primer II, Alloy primer, and Metal/Zirconia primer) and two resin cements (Panavia F2.0, G-CEM LinkAce) were tested. One hundred fifty Co-Cr beams were prepared from Co-Cr ingots via casting ($6mm\;ength{\times}1mm\;width{\times}1mm\;thick$). The metal beams were randomly divided into ten groups according to the adhesive primers and resin cements used; the no-primer groups served as the control (n = 15). After sandblasting with aluminum oxide ($125{\mu}m$ grain), the metal and resin cements were bonded together using a silicone mold. Prior to testing, all metal-resin beams were examined under stereomicroscope, and subjected to the ${\mu}TBS$ test. The mean value of each group was analyzed via one-way ANOVA with Tukey's test as post hoc (${\alpha}=.05$) using SPSS software. Results: The mean ${\mu}TBS$ of all groups was ranged from 20 to 28 MPa. There is no statistically significant difference between groups (P > .05). Mixed failure, which is the combination of adhesive and cohesive failures, is the most prevalent failure mode in both the Panavia F2.0 and G-Cem LinkAce groups. Conclusion: The ${\mu}TBS$ of all tested groups are relatively high; however, the primers used in this study result in no favorable effect in the ${\mu}TBS$ of Panavia F2.0 and G-Cem LinkAce resin cement to Co-Cr alloy.

Evaluation of Marginal and Internal Gap of Cobalt-Chromium Sintering Metal Coping Fabricated by Dental CAD/CAM System (치과 CAD/CAM 시스템으로 제작한 코발트-크롬 소결 금속 코핑의 변연 및 내면 적합도 평가)

  • Kim, Dong-Yeon;Sin, Chun-Ho;Jung, Il-Do;Kim, Ji-Hwan;Kim, Woong-Chul
    • Journal of dental hygiene science
    • /
    • v.15 no.5
    • /
    • pp.536-541
    • /
    • 2015
  • The purpose of this study was to evaluate the marginal and internal gap of Cobalt (Co)-Chromium (Cr) sintering metal coping fabricated by dental computer-aided design/computer-aided manufacturing systems. Abutment tooth 46 of universal numbering system was selected for the study. Twenty Co-Cr metal copings of two groups were manufactured and scanned. Co-Cr cast metal copings (CCM) group of ten were fabricated using investment, burnout and casing after subtractive manufacturing of wax block. Also, Co-Cr sintering metal copings (CSM) group of ten were fabricated using sintering processing after subtractive manufacturing of Co-Cr soft metal bock. Marginal and internal gap of Co-Cr metal copings of twenty were measured by digital microscope (${\times}160$) with silicone replica technique. The data was analyzed from IBM SPSS Statistics ver. 22.0 Statistical software for Mann-Whitney U test (${\alpha}=0.05$). $Mean{\pm}standard$ deviation of marginal gap of CCM group was $90.12{\pm}61.73{\mu}m$ of CSM group was $60.17{\pm}24.83{\mu}m$. However, two groups was statistically not different (p>0.05). This study showed that CSM group was clinically acceptable adaptation.

Fracture Strength and Translucency of CAD/CAM Zirconia Crown for Primary Anterior Tooth (CAD/CAM으로 제작한 유전치 지르코니아 전장관의 두께에 따른 파절강도와 반투명도 비교)

  • Ong, Seung-Hwan;Kim, Jongsoo;Kim, Jongbin;Shin, Jisun;Yoo, Seunghoon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.47 no.2
    • /
    • pp.205-212
    • /
    • 2020
  • The purpose of this study is to evaluate the validity of primary anterior zirconia crown made with Computer Aided Design/Computer Aided Manufacturing (CAD/CAM) technology by analyzing fracture strength and translucency parameter. Zirconia crown was designed with CAD software, using 3D scanned data of #61 tooth model. Crown fabrication was performed with CAM machine using zirconia block. Zirconia crowns were divided into 3 groups according to thickness(0.3, 0.5, and 0.7 mm), and fracture strength was compared with 1.0 mm thickness of resin strip crown. The compressive force was applied with universal testing machine at 30° along the incisal edge at increments of 1 mm/min. For translucency evaluation, 0.3, 0.5, and 0.7 mm thickness of zirconia specimens were fabricated and translucency was measured with spectrophotometer. Among zirconia groups, there was a significant increase in fracture strength as thickness increased (p < 0.05). The fracture strength of zirconia crown was significantly higher than resin strip crown in all groups (p < 0.05). Translucency parameter was highest in 0.3 mm group, and significantly decreased as thickness increased to 0.5 and 0.7 mm (p < 0.05). Thin primary anterior zirconia crown can be designed and fabricated according to individual needs by using CAD/CAM. Restoration with thin crown would reduce the amount of tooth reduction, risk of pulp exposure, and make more esthetic restoration possible.

Comparison of the Marginal and Internal Gap of Metal Coping according to Processing Method of Dental CAD/CAM System (치과 캐드캠 시스템의 가공 방식에 따른 금속 코핑의 적합도 비교)

  • Kim, Dong-Yeon;Jeon, Jin-Hun;Park, Jin-Young;Kim, Ji-Hwan;Kim, Hae-Young;Kim, Woong-Chul
    • Journal of dental hygiene science
    • /
    • v.15 no.1
    • /
    • pp.12-17
    • /
    • 2015
  • The purpose of this study was to evaluate the marginal and internal gap of metal coping fabricated using additive manufacturing (AM) group and subtractive manufacturing (SM) group by dental computer-aided design (CAD)/computer-aided manufacturing (CAM) systems. Twenty same cases of stone models of abutment teeth 16 by the universal numbering system were manufactured and scanned. Ten metal copings of control group were fabricated using SM and ten metal coping of experimental group were fabricated using AM. Marginal and internal gap of copings were measured using the silicone replica technique and digital microscope (${\times}140$). The data were analyzed using IBM SPSS 21.0 Statistical Software for independent samples t-test (${\alpha}=0.05$). Mean${\pm}$ standard deviation (SD) of marginal and internal gap total size of SM group was $101.00{\pm}40.33{\mu}m$ of AM group was $83.61{\pm}40.37{\mu}m$. Mean${\pm}$SD of marginal and internal gap total size of SM group was significantly greater than that of AM group (p<0.05). This study showed that AM metal copings had a better marginal and internal gap than SM metal copings.

Design and Implementation of Feature Catalogue Builder based on the S-100 Standard (S-100 표준 기반 피처 카탈로그 제작지원 시스템의 설계 및 구현)

  • Park, Daewon;Kwon, Hyuk-Chul;Park, Suhyun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.8
    • /
    • pp.571-578
    • /
    • 2013
  • The IHO S-100 is a standard on the universal hydorgraphic data model for supporting information services that integrate various data in maritime and provide proper information for safety of vessels. The S-100 is used to develop S-10x product specifications which are standards on guideline for creation and delivery of specific data set in maritime. The product specification for feature-based data such as ENC(Electronic Navigational Chart) data includes a feature catalogue that describes characteristics of features in that feature-based data. The feature catalogue is developed by domain experts with knowledge on data of the target domain. However, it is not feasible to develop a feature catalogue according to the XML schema by manual. In the IHO TSMAD committee meeting, needs of developing technology on building feature catalogue has been discussed. Therefore, we present a feature catalogue builder that is a GUI(Graphic User Interface) system supporting domain experts to build feature catalogues in XML. The feature catalogue builder is developed to connect with the FCD(Feature Concept Dictionary) register in the IHO(International Hydrographic Organization) GI(Geographic Information) registry. Also, it supports domain experts to select proper feature items based on the relationships between register items.

Design and Implementation of Co-Verification Environments based-on SystemVerilog & SystemC (SystemVerilog와 SystemC 기반의 통합검증환경 설계 및 구현)

  • You, Myoung-Keun;Song, Gi-Yong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.4
    • /
    • pp.274-279
    • /
    • 2009
  • The flow of a universal system-level design methodology consists of system specification, system-level hardware/software partitioning, co-design, co-verification using virtual or physical prototype, and system integration. In this paper, verification environments based-on SystemVerilog and SystemC, one is native-code co-verification environment which makes prompt functional verification possible and another is SystemVerilog layered testbench which makes clock-level verification possible, are implemented. In native-code co-verification, HW and SW parts of SoC are respectively designed with SystemVerilog and SystemC after HW/SW partitioning using SystemC, then the functional interaction between HW and SW parts is carried out as one simulation process. SystemVerilog layered testbench is a verification environment including corner case test of DUT through the randomly generated test-vector. We adopt SystemC to design a component of verification environment which has multiple inheritance, and we combine SystemC design unit with the SystemVerilog layered testbench using SystemVerilog DPI and ModelSim macro. As multiple inheritance is useful for creating class types that combine the properties of two or more class types, the design of verification environment adopting SystemC in this paper can increase the code reusability.

  • PDF

Comparison of Flexural Strength of Three-Dimensional Printed Three-Unit Provisional Fixed Dental Prostheses according to Build Directions

  • Park, Sang-Mo;Park, Ji-Man;Kim, Seong-Kyun;Heo, Seong-Joo;Koak, Jai-Young
    • Journal of Korean Dental Science
    • /
    • v.12 no.1
    • /
    • pp.13-19
    • /
    • 2019
  • Purpose: The aim of this study was to compare the flexural strength of provisional fixed dental prostheses which was three-dimensional (3D) printed by several build directions. Materials and Methods: A metal jig with two abutment teeth and pontic space in the middle was fabricated. This jig was scanned with a desktop scanner and provisional restoration was designed on dental computer-aided design program. On the preprocessing software, the build angles of the restorations were arranged at $0^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, and $90^{\circ}$ and support was added and resultant structure was sliced to a thickness of $100{\mu}m$. Processed restorations were printed with digital light processing type 3D printer using poly methyl meta acrylate-based resin. After washing and post-curing, compressive loading was applied at a speed of 1 mm/min on a metal jig fixed to a universal testing machine. The maximum pressure at which fracture occurred was measured. For the statistical analysis, build direction was set as the independent variable and fracture strength as the dependent variable. One-way analysis of variance and Tukey's post hoc analysis was conducted to compare fracture strength among groups (${\alpha}=0.05$). Result: The mean flexural strength of provisional restoration 3D printed with the build direction of $0^{\circ}$ was $1,053{\pm}168N$; it was $1,183{\pm}188N$ at $30^{\circ}$, $1,178{\pm}81N$ at $45^{\circ}$, $1,166{\pm}133N$ at $60^{\circ}$, and $949{\pm}170N$ at $90^{\circ}$. The group with a build direction of $90^{\circ}$ showed significantly lower flexural strength than other groups (P<0.05). The flexural strength was significantly higher when the build direction was $30^{\circ}$ than when it was $90^{\circ}$ (P<0.01). Conclusion: Among the build directions $0^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, and $90^{\circ}$ set for 3D printing of fixed dental prosthesis, an orientation of $30^{\circ}$ is recommended as an effective build direction for 3D printing.

Effects of particle size and loading rate on the tensile failure of asphalt specimens based on a direct tensile test and particle flow code simulation

  • Q. Wang;D.C. Wang;J.W. Fu;Vahab Sarfarazi;Hadi Haeri;C.L. Guo;L.J. Sun;Mohammad Fatehi Marji
    • Structural Engineering and Mechanics
    • /
    • v.86 no.5
    • /
    • pp.607-619
    • /
    • 2023
  • This study, it was tried to evaluate the asphalt behavior under tensile loading conditions through indirect Brazilian and direct tensile tests, experimentally and numerically. This paper is important from two points of view. The first one, a new test method was developed for the determination of the direct tensile strength of asphalt and its difference was obtained from the indirect test method. The second one, the effects of particle size and loading rate have been cleared on the tensile fracture mechanism. The experimental direct tensile strength of the asphalt specimens was measured in the laboratory using the compression-to-tensile load converting (CTLC) device. Some special types of asphalt specimens were prepared in the form of slabs with a central hole. The CTLC device is then equipped with this specimen and placed in the universal testing machine. Then, the direct tensile strength of asphalt specimens with different sizes of ingredients can be measured at different loading rates in the laboratory. The particle flow code (PFC) was used to numerically simulate the direct tensile strength test of asphalt samples. This numerical modeling technique is based on the versatile discrete element method (DEM). Three different particle diameters were chosen and were tested under three different loading rates. The results show that when the loading rate was 0.016 mm/sec, two tensile cracks were initiated from the left and right of the hole and propagated perpendicular to the loading axis till coalescence to the model boundary. When the loading rate was 0.032 mm/sec, two tensile cracks were initiated from the left and right of the hole and propagated perpendicular to the loading axis. The branching occurs in these cracks. This shows that the crack propagation is under quasi-static conditions. When the loading rate was 0.064 mm/sec, mixed tensile and shear cracks were initiated below the loading walls and branching occurred in these cracks. This shows that the crack propagation is under dynamic conditions. The loading rate increases and the tensile strength increases. Because all defects mobilized under a low loading rate and this led to decreasing the tensile strength. The experimental results for the direct tensile strengths of asphalt specimens of different ingredients were in good accordance with their corresponding results approximated by DEM software.

Design and Application of Artificial Intelligence Experience Education Class for Non-Majors (비전공자 대상 인공지능 체험교육 수업 설계 및 적용)

  • Su-Young Pi
    • Journal of Practical Engineering Education
    • /
    • v.15 no.2
    • /
    • pp.529-538
    • /
    • 2023
  • At the present time when the need for universal artificial intelligence education is expanding and job changes are being made, research and discussion on artificial intelligence liberal arts education for non-majors in universities who experience artificial intelligence as part of their job is insufficient. Although artificial intelligence education courses for non-majors are being operated, they are mainly operated as theory-oriented education on the concepts and principles of artificial intelligence. In order to understand the general concept of artificial intelligence for non-majors, it is necessary to proceed with experiential learning in parallel. Therefore, this study designs artificial intelligence experiential education learning contents of difficulty that can reduce the burden of artificial intelligence classes with interest in learning by considering the characteristics of non-majors. After, we will examine the learning effect of experiential education using App Inventor and the Orange artificial intelligence platform. As a result of analysis based on the learning-related data and survey data collected through the creation of AI-related projects by teams, positive changes in the perception of the need for AI education were found, and AI literacy skills improved. It is expected that it will serve as an opportunity for instructors to lay the groundwork for designing a learning model for artificial intelligence experiential education learning.

Accuracy of 5-axis precision milling for guided surgical template (가이드 수술용 템플릿을 위한 5축 정밀가공공정의 정확성에 관한 연구)

  • Park, Ji-Man;Yi, Tae-Kyoung;Jung, Je-Kyo;Kim, Yong;Park, Eun-Jin;Han, Chong-Hyun;Koak, Jai-Young;Kim, Seong-Kyun;Heo, Seong-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.48 no.4
    • /
    • pp.294-300
    • /
    • 2010
  • Purpose: The template-guided implant surgery offers several advantages over the traditional approach. The purpose of this study was to evaluate the accuracy of coordinate synchronization procedure with 5-axis milling machine for surgical template fabrication by means of reverse engineering through universal CAD software. Materials and methods: The study was performed on ten edentulous models with imbedded gutta percha stoppings which were hidden under silicon gingival form. The platform for synchordination was formed on the bottom side of models and these casts were imaged in Cone beam CT. Vectors of stoppings were extracted and transferred to those of planned implant on virtual planning software. Depth of milling process was set to the level of one half of stoppings and the coordinate of the data was synchronized to the model image. Synchronization of milling coordinate was done by the conversion process for the platform for the synchordination located on the bottom of the model. The models were fixed on the synchordination plate of 5-axis milling machine and drilling was done as the planned vector and depth based on the synchronized data with twist drill of the same diameter as GP stopping. For the 3D rendering and image merging, the impression tray was set on the conbeam CT and pre- and post- CT acquiring was done with the model fixed on the impression body. The accuracy analysis was done with Solidworks (Dassault systems, Concord, USA) by measuring vector of stopping’s top and bottom centers of experimental model through merging and reverse engineering the planned and post-drilling CT image. Correlations among the parameters were tested by means of Pearson correlation coefficient and calculated with SPSS (release 14.0, SPSS Inc. Chicago, USA) ($\alpha$ = 0.05). Results: Due to the declination, GP remnant on upper half of stoppings was observed for every drilled bores. The deviation between planned image and drilled bore that was reverse engineered was 0.31 (0.15 - 0.42) mm at the entrance, 0.36 (0.24 - 0.51) mm at the apex, and angular deviation was 1.62 (0.54 - 2.27)$^{\circ}$. There was positive correlation between the deviation at the entrance and that at the apex (Pearson Correlation Coefficient = 0.904, P = .013). Conclusion: The coordinate synchronization 5-axis milling procedure has adequate accuracy for the production of the guided surgical template.