• Title/Summary/Keyword: Unit weight test

Search Result 450, Processing Time 0.026 seconds

Fundamental Tests for General Use of High-Strength Lightweight Concrete (고강도 경량콘크리트의 실용화를 위한 기초적 실험연구)

  • 김형태;김원근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.04a
    • /
    • pp.39-44
    • /
    • 1990
  • This experimental study is performed by using artificial lightweight aggregate manufactured in laboratory, and the test results of it are compared with those using foreign materials in respect of design compressive strength, unit weight. The tests on strength characteristics such as bending, splitting tensile strength and on mechanical characteristics including σ-εcurve, elastic modulus, poisson's ratio are performed to provide the fundamental data required for the design. From this study, it is possible to obtain the high-strength concrete having compressive strength of 500 kg/㎠ and unit weight of 1.85-2.0 t/㎥. And also it is recommended that sandlightweight concrete having high specfic strength is more practical for general use.

  • PDF

Electrical Resistivity Variations of Contaminated Soils (오염토양의 전기 비저항치 변화 연구)

  • 윤길림;이용길
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.05a
    • /
    • pp.84-89
    • /
    • 2000
  • Parametric studies based on laboratory pilot tests were performed to investigate the relationships between electrical resistivity and contaminated soil properties. Three kinds of sandy soils sampled and leachates from a industrial waste landfill were mixed to model the contaminated soils. Electrical resistivity of soils were measured by using a simulated resistivity cone penetrometer probe. In the experiments, the electrical resistivity were observed with changing the water content, void ratio, unit weight, degree of saturation, and concentration of the leachate. The test results show that the electrical resistivity of soils depends largely on the water content and the electrical property of pore water rather than unit weight and types of soils.

  • PDF

Physical and Mechanical Properties of Concrete Using Recycled Aggregate and Industrial By-Products (재생골재와 산업부산물을 사용한 콘크리트의 물리.역학적 특성)

  • 성찬용;김영익
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.6
    • /
    • pp.128-135
    • /
    • 2003
  • This study is performed to examine the physical and mechanical properties of concrete using recycled aggregate and industrial by-products. The test results show that the unit weight, compressive and flexural strength, ultrasonic pulse velocity and dynamic modulus of elasticity are decreased with increasing the content of recycled aggregate. But, the absorption ratio is increased with increasing the content of recycled aggregate. The unit weight is 2,237∼2,307 kg/$\textrm{m}^3$, the absorption ratio is 2.96∼4.12%, the compressive strength is 415∼532 kgf/$\textrm{cm}^2$, the flexural strength is 75∼96 kgf/$\textrm{cm}^2$, the ultrasonic pulse velocity is 4,350∼4,949 m/s and the dynamic modulus of elasticity is $390\times10^3\;∼\;465\times10^3$ kg f/$\textrm{cm}^2$, respectively These recycled aggregate concrete can be used for high strength concrete.

Physical and Mechanical Properties of Mortar Using Non-active Hwangto and Stone Dust (비활성 황토와 석분을 사용한 모르타르의 물리.역학적 특성)

  • 성찬용;류능환;윤준노
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.6
    • /
    • pp.83-89
    • /
    • 2002
  • The purpose of this study is to obtain the basic data for the development of construction material products using non-active Hwangto and stone dust. The test result shows that the unit weight is in the range of 2,050~2,135 kg/m$^3$, the compressive strength is in the range of 107~451 kgf/cm$^2$, the bending strength is in the range of 23~81 kgf/cm$^2$ and the dynamic modulus is in the range of 137$\times$10$^3$~318$\times$10$^3$ kgf/cm$^2$. Also, it is decreased with increase using the non-active Hwangto and stone dust, respectively. The incorporation of non-active Hwangto for cement is possible to 40% in strength.

Engineering Model Design and Implementation of Telemetry-Command Unit for STSAT-2 (과학기술위성 2호 원격검침-명령 유닛 시험모델 설계 및 구현)

  • Oh, Dae-Soo;Ryu, Chang-Wan;Nam, Myeong-Ryong;Hwang, Dong-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.5
    • /
    • pp.93-98
    • /
    • 2005
  • An Engineering Model(EM) of the Telemetry-Command Unit(TCU) for STSAT-2 was developed. The TCU of STSAT-2 has some improved features compared with that of STSAT-1. To reduce weight and size of TCU all logics are implemented in FPGA without CPU. EM I&T(Integration and Test) was successfully performed with no errors.

Mechanical Characteristics of Reinforced Soil(I) -Cement Reinforced Soil- (보강 혼합토의 역학적 특성(I) -시멘트 혼합토-)

  • Song, Chang-Seob;Lim, Seong-Yoon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.6
    • /
    • pp.9-13
    • /
    • 2002
  • This study has been performed to investigate the physical and mechanical characteristics of compaction, volume change and compressive strength for reinforced soil mixed with cement. And confirm the reinforcing effects with admixture such as cement. To this end, a series of compaction test and compression test was conducted for clayey soil(CL) and cement reinforced soil. In order to determine proper moisture content and mixing ratio, pilot test was carried out for soil and cement reinforced soil. And the mixing ratio of cement admixture was fixed 3%, 6%, 9% and 12% by the weight of dry soil. As the experimental results, the maximum dry unit weight(${\gamma}_{dmax}$) was increased with the mixing ratio and then shown the peak at 10% reinforced soil, but the optimum moisture content(OMC) and the volume change was decreased with the ratio increase. And the compressive strength volume change was decreased with mixing ratio increased.

Structural Performance Test of Optimized Outer Tie Rod (아우터타이로드 최적화 모델의 구조성능시험)

  • Kim, Jong-Kyu;Seo, Sun-Min;Kim, Young-Jun;Lee, Dong-Jin;Lee, Seul;Park, Young-Chul;Lee, Kwon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.82-87
    • /
    • 2012
  • The outer tie rod that is a part of steering system connects the steering gear to the steering knuckle via the inner tie rod. The formal study suggested the optimized structural design of an outer tie rod installed in a passenger car. Its weight is 284.7g, which is 57.2% lighter weight than initial steel model. This study validates the optimized design of the outer tie rod considering buckling and durability. The assembled unit of an inner tie rod and outer tie rod is utilized to perform the test of the bending strength of the outer tie rod. On the contrary, 1/2 car is utilized to perform the test of its durability performance.

Mechanical Characteristics of Reinforced Soil(II) -Fiber Reinforced Soil- (보강 혼합토의 역학적 특성(II) -섬유 혼합토-)

  • Song, Chang Seob;Lim, Seong Yoon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.6
    • /
    • pp.37-42
    • /
    • 2002
  • This study has been performed to investigate the physical and mechanical characteristics of compaction, volume change and compressive strength for reinforced soil mixed with polypropylene fiber, and to confirm the reinforcing effects with admixture such as polypropylene fiber. To this end, a series of compaction test and compression test was conducted for clayey soil(CL) and polypropylene fiber reinforced soil. In order to determine proper moisture contents and mixing ratio, pilot test was carried out for natural soil and PFRS(polypropylene fiber reinforced soil). And the mixing ratio of mono-filament fiber and fibrillated polypropylene fiber admixture was 0.1%, 0.3%, 0.5% and 1.0% by the weight of dry soil. From the experimental results, it was found that the optimum moisture contents(OMC) increased with the mixing ratio of fiber, but the maximum dry unit weight and the volume change was decreased with the mixing ratio. It means that the improvement of the workability and the reduction of the weight of embankment was done by the addition of the polypropylene fiber. And, from the compression test results, it was found that the addition of the polypropylene fiber remarkably improved the compressive strength of PFRS. And it was observed in the viewpoint of strength that the fibrillated polypropylene fiber reinforced soil was more effective than the mono-filament polypropylene fiber reinforced soil.

Effects of a Sensory Stimulation on Weight Gain in Premature Infants (감각자극이 미숙아의 체중증가에 미치는 영향)

  • Lee Kun Ja;Cho Kyoul Ja
    • Child Health Nursing Research
    • /
    • v.5 no.3
    • /
    • pp.250-261
    • /
    • 1999
  • This study has been conducted on the nonequivalent control group Pretest-posttest design in quasi experimental basis and newly born premature infants from intensive care unit of G Medical University Hospital in Inchon Metropolitan were selected in two groups of 21 infants each. The first group for experimental and the other for control. Data has been collected form October 30, 1997 to August 29, 1998. For the experimental group tactile and kinesthetic stimulation was applied 2 times a day for 10 days(10:00~ll:00 hours in the morning and 17:00~18:00 in the afternoon). As, a weight weighing instrument, electronic indicator scale(Cas Co. korea) was used. Collected data were analyzed with the SAS program using x²-test, student t-test, repeated measures ANOVA, Pearson correlated coefficient and Stepwise multiple regression. The result were as follow. 1. As for the daily weight gain, the experimental group showed first change in weight and this group also showed higher weight in the average weight than the control group. Statistically, however. there was no significant factor between the two groups. 2. In the correlation between general characteristics and weight gain, gestation Period. apgar score, admission Period before study, N.P.O. period after birth, recovery Period to birth weight showed statistical significance negative correlation with weight gam in the experimental group than control group. 3. In the factor with affected the weight gain by general characteristics showed recovery period to birth weight and head circumference in the experimental group, control group showed recovery period to birth weight, N. P. O. period after birth. admission period before study, feeding amount, weight of study. In conclusion. the sensory stimulation in this study showed a Positive aspect through there was no statistical significance in the weight gam. Tn the correlation of general characteristics and weight gam showed statistical significance negative correlation The main factor which affected the weight gain by general characteristics showed recover period to birth weight.

  • PDF

Estimation model of shear strength of soil layer using linear regression analysis (선형회귀분석에 의한 토층의 전단강도 산정모델)

  • Lee, Moon-Se;Kim, Kyeong-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1065-1078
    • /
    • 2009
  • The shear strength has been managed as an important factor in soil mechanics. The shear strength estimation model was developed to evaluate the shear strength using only a few soil properties by the linear regression analysis model which is one of the statistical methods. The shear strength is divided into two part; one is the internal friction angle ($\Phi$) and the other is the cohesion (c). Therefore, some valid soil factors among the results of soil tests are selected through the correlation analysis using SPSS and then the model are formulated by the linear regression analysis based on the relationship between factors. Also, the developed model is compared with the result of direct shear test to prove the rationality of model. As the results of analysis about relationship between soil properties and shear strength, the internal friction angle is highly influenced by the void ratio and the dry unit weight and the cohesion is mainly influenced by the void ratio, the dry unit weight and the plastic index. Meanwhile, the shear strength estimated by the developed model is similar with that of the direct shear test. Therefore, the developed model may be used to estimate the shear strength of soils in the same condition of study area.

  • PDF