• Title/Summary/Keyword: Unit Weight

Search Result 2,361, Processing Time 0.024 seconds

Physical and Mechanical Properties of Concrete Using Recycled Aggregate and Industrial By-Products (재생골재와 산업부산물을 사용한 콘크리트의 물리.역학적 특성)

  • 성찬용;김영익
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.6
    • /
    • pp.128-135
    • /
    • 2003
  • This study is performed to examine the physical and mechanical properties of concrete using recycled aggregate and industrial by-products. The test results show that the unit weight, compressive and flexural strength, ultrasonic pulse velocity and dynamic modulus of elasticity are decreased with increasing the content of recycled aggregate. But, the absorption ratio is increased with increasing the content of recycled aggregate. The unit weight is 2,237∼2,307 kg/$\textrm{m}^3$, the absorption ratio is 2.96∼4.12%, the compressive strength is 415∼532 kgf/$\textrm{cm}^2$, the flexural strength is 75∼96 kgf/$\textrm{cm}^2$, the ultrasonic pulse velocity is 4,350∼4,949 m/s and the dynamic modulus of elasticity is $390\times10^3\;∼\;465\times10^3$ kg f/$\textrm{cm}^2$, respectively These recycled aggregate concrete can be used for high strength concrete.

Engineering Properties of Permeable Polymer Concrete Using Bottom Ash and Recycled Coarse Aggregate

  • Sung, Chan-Yong;Kim, Jong-Hyouk
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.7
    • /
    • pp.25-31
    • /
    • 2006
  • Permeable polymer concretes can be applied to roads, sidewalks, river embankment, drain pipes, conduits, retaining walls, yards, parking lots, plazas, interlocking blocks, etc. This study was to explore a possibility of using bottom ash as filler and recycled coarse aggregate of industrial by-products for permeable polymer concrete. The tests carried out at $20{\pm}1^{\circ}C$ and $60{\pm}2%$ relative humidity. At 7 days of curing, unit weight, void ratio, compressive and flexural strength and coefficient of permeability ranged between $1,652{\sim}1,828kgf/m^{3},\;15{\sim}29+%,\;18.2{\sim}24.5\;MPa,\;6.4{\sim}8.4\;MPa\;and\;6.8{\times}10^{-2}{\sim}1.7{\times}10^{-1}\;cm/s$, respectively. It was concluded that the bottom ash and recycled coarse .aggregate can be used in the permeable polymer concrete.

A Study on Removal Efficiency of Cd by using Chitosan Complex isolated from Aspergillus oryzae (Aspergillus oryzae로부터 분리한 chitosan복합체에 의한 카드뮴 제거 효율에 관한 연구)

  • 장재선;이제만;김용희
    • Journal of environmental and Sanitary engineering
    • /
    • v.19 no.1
    • /
    • pp.37-41
    • /
    • 2004
  • The removal efficiency of cadmium by chitosan complex isolated from Aspersillus oryzae was investigated through laboratory experiments. The results of the study are as follows. The adsorption kinetics of cadmium was reached the adsorption equilibrium in approximately 20 minutes and the removal efficiency was showed 95.8%. The effect of temperature on cadmium adsorption by chitosan complex shows that as the temperature increased, the amount of cadmium adsorption per unit weight of chitosan complex increased. The correlation between amount of cadmium adsorption per unit weight of chitosan complex and temperature was obtained through the coefficient of determination($R^2$). $R^2$ values was 0.854(p<0.05). A linearized Freundlich equation was used to fit the acquired experimental data. As a result, Freundlich constant, the adsorption intensity(1/n) was 0.550, and the measure of adsorption(k) was 2.181. So, it was concluded that adsorption of cadmium by chitosan complex is effective.

NOx Gas Absorption in the Green Tobacco

  • Oh, In-Hyeog;Michael D. Boyette
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.26 no.1
    • /
    • pp.64-72
    • /
    • 2004
  • On-going research has recently documented the certain tobacco specific nitrosamines (TSNAs) are formed during the curing process by an interaction of nitrogen oxides (NOx) contained in combustion gases and naturally occurring compounds in the tobacco leaves. Although the role of TSNAs in human health have been extensively investigated, little research has been conducted on the physical and chemical phenomena relating to their formation during curing. In this paper, we developed a mathematical model for describing NOx absorption into green (uncured) tobacco. We found considerable uptake of NOx by green tobacco with variations related to several factors. Specifically, tobacco from the lower stalk positions (bottom one third) absorbs more NOx gas per unit weight than tobacco from upper stalk positions. Additionally, the green tobacco packed with a density of 0.103 g/㎤ absorbs more NOx gas per unit weight than either 0.0443 g/㎤ or 0.0739 g/㎤. Further, the NOx absorption increases proportionally with temperature with the maximum absorption point around 4$0^{\circ}C$.

Compressive Strength Characteristics of Concrete Using in Crushed Sand (혼합모래를 사용한 콘크리트의 강도 특성)

  • Baek Dong Il;Youm Chi Sun;Kim Myung Sik;Kim Jong Su
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.731-734
    • /
    • 2005
  • Crushed sand is blended in order to investigate the quality changes and characteristics of concrete with variation of blend ratio of crushed sand (50, 60, 70, 80, 90, $100\%$). Slump and air content were measured to investigate properties of fresh concrete, and unit weight, compressive strength and modulus of elasticity in age of 7, 28, 60, 90, 180 days were measured to investigate properties of hardened concrete. Compressive strength, unit weight and modulus of elasticity were increased as time goes by and they are expected to keep on increasing in long-term age as well. As a result of measuring compressive strength and modulus of elasticity in age of 7, 28, 60, 90, 180days, compressive strength was highest when it is $70\%$ of blended ratio.

  • PDF

Physical Properties of Concrete mixed with Fine Sand and Copper Slag (동슬래그 혼합 잔골재를 이용한 콘크리트의 물리적 특성)

  • 이진우;김경민;배연기;이재삼
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.15-18
    • /
    • 2003
  • Development of the construction industry generally exhausts natural aggregate. Hence it is problem to the lack of supply and quality deterioration, so the resource saving and protection of environment is made an effort through recycling by-product. This study presents that fundamental properties of concrete which used cooper slag as alternate sand of low fineness modulus and plan of cooper slag as concrete aggregate. Testing factors are concrete's slump, air contents, unit weight and compressive strength. The results of this study are as follows; (1) Concrete slump is generally satisfied with the condition but is inferior to the others in substitution rates 30%. Also air contents are 3.1-4.1% and go up according to increase substitution rate. (2) Unit weight increase in 1.1% as the mixing ratio of cooper slag argument 10%. (3) compressive strength of cooper slag concrete is similar to plain and especially higher 11-15% in W/C 45%, 50%. So it seems that aggregate mixed cooper slag is suitable to low water-cement ratio mixture.

  • PDF

Properties of Cement Mortar Using Mica Waste as Fine Aggregate (운모폐석을 잔골재로 사용한 시멘트 모르타르의 특성)

  • 윤기원;김광화;오상백;한민철;류현기;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.481-484
    • /
    • 2003
  • This study is intended to investigate application of mica waste(MS) to fine aggregate for mortar by comparing it with cement mortar in which crushed sand(CS) and river sand(NS) are used. According to the results, as the physical properties of aggregate, specific gravity is large in order of MS, NS and CS, absorption ratio in order of MS, CS and NS, and unit weight and solid volume percentage in order of NS, CS and MS. In the case of MS mortar, mechanical properties, drying shrinkage and heat conduction ratio are reduced, but the radiative amount of infrared light is excellent compared with NS mortar. Fluidity and unit weight of MS mortar is larger than those of CS mortar, and strength does not make differences. Length change by drying shrinkage is larger, but heat conduction ratio and radiative amount of infrared light are smaller than CS mortar. Thus, it proves that MS can be used in place of NS and CS, but its quality is deteriorated slightly.

  • PDF

Properties of the Concrete Foaming Agent According to Temperature and Concentration (기포제 온도 및 희석농도에 따른 콘크리트용 기포제의 특성)

  • Choi, Ji-Ho;Lee, Min-Jae;Jeong, Ji-Young;Hwang, Eui-Hwan;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.247-249
    • /
    • 2011
  • Pre-foaming, one of the manufacturing way of foamed concrete, is influenced by foaming agent. When the foaming agent diluted with water, surface tension and viscosity are varied. Therefore, this study is reviewing the surface tension, viscosity and unit weight of foam by experimental factor such as foaming agent types(AES, AOS, VS FP) and foam agent dilution concentration (1, 3, 5%) and temperature of materials (5, 10, 20℃). As an expeimental result, the surface tension and viscosity slightly increased with increasing concentrations. Meanwhile, when increasing temperature, the viscosity has decreased. FP produce relatively stable foams only in case 3% or more, which produce unstable foams containing large amount of water content by decreasing only insignificant surface tension when diluted at concentration of 1%.

  • PDF

A Solution Procedure for Minimizing AS/RS Construction Costs under Throughput Rate Requirement Constraint (작업처리능력 제약하에서 자동창고 건설비용 최소화를 위한 연구)

  • 나윤균;이동하;오근태
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.25 no.4
    • /
    • pp.40-45
    • /
    • 2002
  • An AS/RS construction cost minimization model under throughput rate requirement constraint has been developed, whose objective function includes S/R machine cost, storage rack cost, and interrace conveyor cost. S/R machine cost is a function of the storage rack height, the unit load weight, and the control logic used by the system, while storage rack cost is a function of the storage rack height, the weight and the volume of the unit load. Since the model is a nonlinear integer programming problem which is very hard to solve exactly with large problem size, a solution procedure is developed to determine the height and the length of the storage rack with a fixed number of S/R machines, while increasing the number of S/R machines one by one to meet the throughput rate requirement.

Contributing Factors on Pharmacokinetic Variability in Critically Ill Neonates (신생아중환자의 약동학적 다양성에 영향을 미치는 요인)

  • An, Sook Hee
    • Korean Journal of Clinical Pharmacy
    • /
    • v.27 no.2
    • /
    • pp.63-68
    • /
    • 2017
  • Neonates have large inter-individual variability in pharmacokinetic parameters of many drugs due to developmental differences. The aim of this study was to investigate the factors affecting the pharmacokinetic parameters of drugs, which are commonly used in critically ill neonates. Factors that reflect physiologic maturation such as gestational age, postnatal age, postconceptional age, birth weight, and current body weight were correlated with pharmacokinetic parameters in neonates, especially preterm infants. Comorbidity characteristics affecting pharmacokinetics in critically ill neonates were perinatal asphyxia, hypoxic ischemic encephalopathy, patent ductus arteriosus (PDA), and renal dysfunction. Administration of indomethacin or ibuprofen in neonates with PDA was associated with the reduced clearance of renally excreted drugs such as vancomycin and amikacin. Therapeutic hypothermia and extracoporeal membrane oxygenation were influencing factors on pharmacokinetic parameters in critically ill neonates. Dosing adjustment and careful monitoring according to the factors affecting pharmacokinetic variability is required for safe and effective pharmacotherapy in neonatal intensive care unit.