• Title/Summary/Keyword: Uniform precipitation

Search Result 78, Processing Time 0.029 seconds

Synthesized and Characterization of high density cathode materials for Lithium Secondary Batteries (리튬이온이차전지용 고밀도 양극활물질의 합성 및 평가)

  • Kwon, Yong-Jin;Choi, Byung-Hyun;Ji, Mi-Jung;Sun, Yang-Kuk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.429-429
    • /
    • 2008
  • Li$[Ni_{1/2}Co_{1/2}]O_2$ powder were synthesized from co-precipitation spherical metal oxide, $[Ni_{1/2}Co_{1/2}](OH)_2$. The preparation of metal hydroxide was significantly dependent on synthetic conditions, such as pH, amount of chelating agent, stirring speed, etc. The optimized condition resulted in $[Ni_{1/2}Co_{1/2}](OH)_2$, of which the particle size distribution was uniform and the particle shape was spherical, as observed by scanning electron microscopy. Calcination of the uniform metal hydroxide with LiOH at higher temperature led to a well-ordered layer-structured Li$[Ni_{1/2}Co_{1/2}]O_2$, as confirmed by X-ray diffraction pattern. Also these materials have ${\alpha}-NaFeO_2$ ($R\bar{3}m$) structure. Due to the homogeneity of the metal hydroxide, $[Ni_{1/2}Co_{1/2}](OH)_2$, the final product, Li$[Ni_{1/2}Co_{1/2}]O_2$, was also significantly uniform, i.e., the average particle size was of about 10 to 15 ${\mu}m$ in diameter and the distribution was relatively narrow. As a result, the corresponding tap-density was also high approximately 2.41 $gcm^{-3}$, of which the value is comparable to that of commercialized $LiCoO_2$.

  • PDF

Characteristics of LiMn2O4 Cathode Material Prepared by Precipitation-Evaporation Method for Li-ion Secondary Battery (침전-증발법에 의해 제조된 리튬이온 2차 전지용 LiMn2O4 양극재료의 특성)

  • Kim, Guk-Tae;Yoon, Duck-Ki;Shim, Young-Jae
    • Korean Journal of Materials Research
    • /
    • v.12 no.9
    • /
    • pp.712-717
    • /
    • 2002
  • New wet chemical method so called precipitation-evaporation method was suggested for preparing spinel structure lithium manganese oxide ($LiMn_2$$O_4$) for Li ion secondary battery. Using precipitation-evaporation method, $LiMn_2$$O_4$ cathode materials suitable for Li ion secondary batteries can be synthesized. Single spinel phase $LiMn_2$$O_4$ powder was synthesized at lower temperature compared to that of prepared by solid-state method. $LiMn_2$$O_4$ powder prepared by precipitation-evaporation method showed uniform, small size and well defined crystallinity particles. Li ion secondary battery using $LiMn_2$$O_4$ as cathode materials prepared by precipitation-evaporation method and calcined at $800^{\circ}C$ showed discharge capacity of 106.03mAh/g and discharge capacity of 95.60mAh/g at 10th cycle. Although Li ion secondary battery showed somewhat smaller initial capacity but good cyclic ability. It is suggested that electro-chemical properties can be improved by controlling particle characteristics by particle morphology modification during calcination and optimizing Li ion secondary battery assembly conditions.

Preparation of the TiO2 Coated Mica by Hydrolysis Method(I) (가수분해법에 의한 TiO2 피복 운모의 제조(I))

  • Park, Yoon-Chang;Kim, Hyo-Joong;Kwak, Chung-Heop;Suh, Tae-Soo
    • Applied Chemistry for Engineering
    • /
    • v.8 no.5
    • /
    • pp.709-714
    • /
    • 1997
  • $TiO_2$ hydrate coating on mica in an aqueous solution of $TiOSO_4$ by the hydrolysis using ammonia water studied with emphasis on coating conditions for a uniform coating. For the uniform coating of $TiO_2$ film on mica surface, it was found that smaller mica particles were coated more uniformly compared to larger particles. It was necessary to suppress the rate of formation of hydrated $TiO_2$ particles in solution, which were deposited on mica and generate irregular coating. It was also necessary to control precipitation yield by varying the reaction temperature to obtain uniform coating. More uniform coating was obtained with higher precipitation yield. A uniform dense film was formed when mica particles of average size of $14.7{\mu}m$ is used for mica slurry solution, of which pH is 2.5, and the factor of acidity of $TiOSO_4$ solution is 291, and the solution was kept at $80^{\circ}C$ for 3 hours. The morphology of $TiO_2$ film formed on mica was little affected by firing at $900^{\circ}C$.

  • PDF

High resistivity Czochralski-grown silicon single crystals for power devices

  • Lee, Kyoung-Hee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.4
    • /
    • pp.137-139
    • /
    • 2008
  • Floating zone, neutron transmutation-doped and magnetic Czochralski silicon crystals are being widely used for fabrication power devices. To improve the quality of these devices and to decrease their production cost, it is necessary to use large-diameter wafers with high and uniform resistivity. Recent developments in the crystal growth technology of Czochralski silicon have enable to produce Czochralski silicon wafers with sufficient resistivity and with well-controlled, suitable concentration of oxygen. In addition, using Czoehralski silicon for substrate materials may offer economical benefits, First, Czoehralski silicon wafers might be cheaper than standard floating zone silicon wafers, Second, Czoehralski wafers are available up to diameter of 300 mm. Thus, very large area devices could be manufactured, which would entail significant saving in the costs, In this work, the conventional Czochralski silicon crystals were grown with higher oxygen concentrations using high pure polysilicon crystals. The silicon wafers were annealed by several steps in order to obtain saturated oxygen precipitation. In those wafers high resistivity over $5,000{\Omega}$ cm is kept even after thermal donor formation annealing.

Synthesis and Characterization of High Luminance ${Zn_2}{SiO_4}$:Mn Phosphors (고발광 ${Zn_2}{SiO_4}$:Mn 형광체의 제조 및 특성)

  • 성부용;정하균;박희동;김대수
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.8
    • /
    • pp.774-780
    • /
    • 2000
  • In order to improve luminescence prperty of phosphors, we have synthesized Zn2SiO4:Mn phosphors by a new chemical synthetic route, i.e., the homogeneous precipitation method. This method has featured that the formation of phosphoris completed at relatively low temperature of 105$0^{\circ}C$ and the particle morphology exhibits spherical shape to be well-dispersed and uniform size. At all the Mn concentration explored, phosphors prepared by this method have exhibited the improved emission intensities. In particular, the emission intensities of phosphors with Mn doping contents between 1 at% and 3.5 at% were higher about 40% than that of commercial phosphor. On the other hand, the decay time has been decreased from 23 ms to 11 ms with increasing Mn concentration. In addition, the phosphor composition containing 3 at% Mn has displayed the most saturated color.

  • PDF

The Effect of Dry Methods for Synthesized Yttria-doped Ceria by Co-precipitation (공침법으로 제조된 Yttira Doped Ceria분체의 건조방법에 따른 입자특성 고찰)

  • 변윤기;이상훈;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.8
    • /
    • pp.798-803
    • /
    • 2003
  • In synthesis of nano powders, the hard agglomeration for the synthesized powders occurred during the drying processing. In order to avoid hard agglomeration in particles the freeze drying process was used in this experiment. e fabricated the Yttira-Doped Ceria(YDC) nano powder by co-precipitation. Starting materials used in experiments were the cerium(III) nitrate and yttrium(III) nitrate solution with 야-water, which two solutions were mixed and then the precipitated hydroxides were prepared for adding sodium hydroxide. The co-precipitated powders were dried by the thermal drying at 8$0^{\circ}C$ for 24 h and by freeze drying at -4$0^{\circ}C$, 30 mtorr for 72 h. The lattice parameter and crystallite size as a function of calcination temperature was characterized by XRD analysis. The lattice parameter of YDC was decreased with addition amount of yttrium and was estimated as 5.401683 $\AA$ at $700^{\circ}C$. Crystallite size were calculated by XRD-LB method, and morphologies were confirmed with the observation of TEM and SEM. The freeze dried YDC powders had medium diameter of 17 nm with more uniform size distribution than the thermal dried YDC posers, which were mainly ascribed to the difference of agglomerates formation during drying stage.

Identification of unit hydrograph peak behavior according to changes in precipitation scale in a virtual watershed (가상 유역의 강수 규모 변화에 따른 단위유량도 첨두치의 거동 규명)

  • Yoo, Ju-Hwan;Kim, Joo-Cheol
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.10
    • /
    • pp.655-665
    • /
    • 2023
  • In this study, unit hydrographs are calculated when precipitations of 10 scales instantaneously occurs in a virtual watershed with a constant slope and roughness. Then, the relationship between the peak flow rate and the peak occurrence time of the unit hydrograph was calculated for the precipitation scale, respectively. At this time, the virtual watershed simplified with a rhombic shape, a constant slope, and a flow condition with a certain roughness was applied instead of a natural watershed in order to understand the effect the precipitation scale has on the peak value of the unit hydrograph. And it was assumed that the precipitation in the basin was effective rainfall and the runoff was direct runoff, and the runoff flowed in a straight, uniform flow from the drop point to the outlet. The relationship between the peak flow and the peak occurrence time of the unit hydrograph was calculated in the case of 10 types of precipitation scales of 10 mm, 40 mm, 90 mm, 160 mm, 250 mm, 360 mm, 640 mm, 1,000 mm, 1,210 mm, and 1,690 mm of effective precipitation. A noteworthy achievement of this study is that, even without the storage effect of the watershed, as the scale of precipitation increases, the depth of runoff increases, so the flow rate in the watershed increases and the distance per unit time increases, so the peak flow rate increases and the peak occurrence time increases. This is a nonlinear characteristic of watershed runoff.

Future drought assessment in the Nakdong basin in Korea under climate change impacts

  • Kim, Gwang-Seob;Quan, Ngo Van
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.458-458
    • /
    • 2012
  • Climate extreme variability is a major cause of disaster such as flood and drought types occurred in Korea and its effects is also more severe damage in last decades which can be danger mature events in the future. The main aim of this study was to assess the effectives of climate change on drought for an agriculture as Nakdong basin in Korea using climate change data in the future from data of General Circulation Models (GCM) of ECHO-G, with the developing countries like Korea, the developed climate scenario of medium-high greenhouse gas emission was proposed of the SRES A2. The Standardized Precipitation Index (SPI) was applied for drought evaluation. The drought index (SPI) applied for sites in catchment and it is evaluated accordingly by current and future precipitation data, specific as determined for data from nine precipitation stations with data covering the period 1980-2009 for current and three periods 2010-2039, 2040-2069 and 2070-2099 for future; time scales of 3month were used for evaluating. The results determined drought duration, magnitude and spatial extent. The drought in catchment act intensively occurred in March, April, May and November and months of drought extreme often appeared annual in May and November; drought frequent is a non-uniform cyclic pattern in an irregular repetitive manner, but results showed drought intensity increasing in future periods. The results indicated also spatial point of view, the SPI analysis showed two of drought extents; local drought acting on one or more one of sites and entire drought as cover all of site in catchment. In addition, the meteorology drought simulation maps of spatial drought representation were carried out with GIS software to generate for some drought extreme years in study area. The method applied in this study are expected to be appropriately applicable to the evaluation of the effects of extreme hydrologic events, the results also provide useful for the drought warning and sustainable water resources management strategies and policy in agriculture basins.

  • PDF

The Effect of Carbide Size on the Mechanical Properties of AISI E 52100 Steel (AISI E 52100 강(鋼)의 기계적(機械的) 성질(性質)에 미치는 탄화물(炭化物) 크기의 영향(影響))

  • Cho, K.R.;Kim, B.W.;Nam, T.W.;Lee, B.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.3 no.4
    • /
    • pp.10-22
    • /
    • 1990
  • A study has been investigated on the effect of mechanical properties (tension strength, rotary bending fatigue strength, wear resistance, hardness) according to the carbide particle size variation by the treatment of 1) quenching tempering, and 2) quenching, subzero treatment and tempering. The material used in this investigation was a typical bearing steel, high C high Cr, AISI E 52100. The result obtained in this study were as follows : (1) Finer the carbide particle size increasing the hardness and retained austenite in same quenching condition. (2) Finer the carbide particle size reduced the tension and rotary bending fatigue which were resulted from austenite grain growth and carbide precipitation on grain boundry that induced by carbide refine heat treatment. (3) Finer the carbide particel size increasing the wear resistance which were resulted by uniform distribution of carbide and increased hardness induced by microstructural uniform hardenability of matrix. (4) When the carbide particles were refinded, subzero treatment is effective only wear resistance and hardness.

  • PDF

The Electrical Properties of Non-Uniformly Contaminated Insulator (국부오손에 의한 절연물의 전기적 특성)

  • Choi, Nam-Ho;Park, Kang-Sik;Koo, Kyung-Wan;Kim, Jong-Serk;Han, Sang-Ok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.935-938
    • /
    • 2002
  • The degree of contamination in outdoor insulation system is one of the most importance factor to determine the level of insulation, and the salt is known as the most dangerous contaminants in the most region of the world. In a macroscopic point of view, as shown through the preceding study, the generation and deposition of salt contaminants has a great relation with the geographical conditions and the meteorological conditions, such as, wind velocity, wind direction, precipitation and so forth. However, in the aspect of microscopic analysis, the pollution mechanism has a great relation with aerodynamic properties of insulator, originated from the profile of insulators, and the non-uniform deposition is unevitable. So, in this investigation, we had make a experiment to seize the electrical properties of non-uniformly contaminated insulator. The results of this investigation could be used as a good groundwork in the determination of outdoor insulation design.

  • PDF