• Title/Summary/Keyword: Uniform electric field

Search Result 216, Processing Time 0.025 seconds

Effect of Nozzle Material on Drop Size Distribution in Electrohydrodynamic Spraying (전기수력학적 분무에서 노즐재질이 입경분포에 미치는 영향)

  • 김명찬;이상용
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.10
    • /
    • pp.1451-1457
    • /
    • 2002
  • When an aqueous liquid such as water having high electric conductivity and high surface tension is discharged from a nozzle under a strong DC electric field, fine drops ranging from 30 to 450 microns can be obtained only through the spindle mode. In the present study, effects of the electric conductivity and the surface wettability of nozzle materials on formation of drops with this mode were investigated. For that, three nozzles with the same size but with different materials were prepared and tested; a stainless steel needle, and a plain and a metal (gold)-coated (except for the tip portion) silica needles. Uniform drops were obtained with the gold-coated silica nozzle over the wider range of the DC voltage input. That is, formation of the liquid cone and detachment of the liquid spindle (ligament) can be more stabilized and frequent with the needles having high electric conductivity but with low surface wettability at their tips.

Evaluation of Stress Intensity Factors for an Electrostrictive Crack with an Electric Yielding Zone (전기적 항복영역을 갖는 전왜균열에 대한 응력강도계수 계산)

  • 범현규;정은도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.469-472
    • /
    • 2000
  • a crack with electrically impermeable surfaces in an electrostrictive material subjected to uniform electric loading is analysed. A strip yield zone model is employed to investigate the effect of electric yielding on stress intensity factor. complete forms of electric fields and elastic fields for the crack are derived by using complex function theory. /the stress intensity factors are obtained based on the strip yield zone model.

  • PDF

Characterization of Channel Electric Field in LDD MOSFET (LDD MOSFET채널 전계의 특성 해석)

  • 한민구;박민형
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.6
    • /
    • pp.401-415
    • /
    • 1989
  • A simple but accurate analytical model for the lateral channel electric field in gate-offset structured Lightly Doped Drain MOSFET has been developed. Our model assumes Gaussian doping profile, rather than simple uniform doping, for the lightly doped region and our model can be applied to LDD structures where the junction depth of LDD is not identical to the heavily doped drain. The validity of our model has been proved by comparing our analytical results with two dimensional device simulations. Due to its simplicity, our model gives a better understanding of the mechanisms involved in reducing the electric field in the LDD MOSFET. The model shows clearly the dependencies of the lateral channel electric field on the drain and gate bias conditions and process, design parameters. Advantages of our analytical model over costly 2-D device simulations is to identify the effects of various parameters, such as oxide thickness, junction depth, gate/drain bias, the length and doping concentration of the lightly doped region, on the peak electric field that causes hot-electron pohenomena, individually. Our model can also find the optimum doping concentration of LDD which minimizes the peak electric field and hot-electron effects.

  • PDF

Analysis of Particles Motion in Liquid Flow in Non-uniform Electric Field (불평등 전계 하 액체유동 내 입자 운동 해석)

  • Chung, Han-Baek;Seo, Kyung-Sik;Choi, Chan-Young;Park, Il-Han
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.3
    • /
    • pp.139-143
    • /
    • 2017
  • In this paper, we propose a separation method of the dielectric particles in the liquid flow. Since particles are dielectric in most cases, they experience dielectrophoretic(DEP) force under non-uniform electric field. The field characteristics in the electromagnetic and fluid dynamic systems are solved by using the finite element method. The motional equation of the particles is calculated by the Runge-Kutta method. The field analysis shows the feasibility of the proposed method. The particle separation model with large DEP force exerting on particles is designed by analyzing field characteristics.

Electric Field Optimization using the NURB curve in a Gas-Insulated Switchgear (NURB 곡선을 이용한 가스절연 원통형 관로 내에서의 전계 최적화)

  • Han, In-Su;Kim, Eung-Sik;Min, Suk-Won;Lee, June-Ho;Park, Jong-Keun;Lee, Tae-Hyung;Park, Choon-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.548-558
    • /
    • 2009
  • This paper attempts to develop an algorithm which optimizes the electric field through the so-called NURB(Non-Uniform Rational B-spline) curve in order to improve the insulation capacity. In particular, the NURB curve is a kind of interpolation curve that can be expressed by a few variables. The electric field of a conductor is computed by Charge Simulation Method(CSM) while that of a spacer by Surface Charge Method(SCM); this mixed calculation method is adopted for the electric field optimization. For calculation of the initial and optimal shapes, the Gauss-Newton method, which is quite easy to formulate and has slightly faster convergence rate than other optimization techniques, was used. The tangential electric field, the total electric field, and the product of the tangential electric field and area (Area Effect) were chosen as the optimization objective function by the average value of electric field for the determined initial shape.

Three-Dimensional Electric Field Calculation around the 345kV Sinmasan Substation Busbars (신마산 345kV 전력소 모선하의 3차원 불평등 전계분포 해석)

  • Myung, Sung-Ho;Lee, Byeong-Yoon;Han, Inn-Su;Park, Jong-Keun;Min, Suk-Won;Kim, Eung-Sik;Lee, Ki-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1804-1806
    • /
    • 1996
  • For the rather complicated and time-consuming three-dimensional electric field calculation in the vicinity of substations, this paper proposes a numerical calculation method based on charge simulation method(CSM). In order to represent non-uniform charge distribution on an electrode better, it is subdivided into small segments with linear charge density. Non-uniform arrangement of subdivided segments makes it possible to obtain high accuracy with a small number of variables. As for the arrangement of subdivided segments, effective formulars were derived from multiple regression analysis of many simulations. These formulars make the arrangement of segments fast and effective. The proposed method is applied to the electric field calculation around the 345kV Sinmasan Substation busbars and the distribution of calculated electric fields is compared with that of the measured electric fields.

  • PDF

Effects of Bubble Discharge on pH and Oxidation/Reduction Potential Change by Non-Uniform Electric Field (불평등전계에 의한 기포방전이 수소이온농도와 산화환원전위변화에 미치는 영양)

  • 김진규;김광태
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.6
    • /
    • pp.77-82
    • /
    • 2003
  • In this paper, as the new type of multi-lines electrode which can formulate strong non-uniform electric field was installed in strong electrolytic water generator, shapes of pre-discharge in bubble and effects of bubble discharge on pH and oxidation/reduction potential change were intended to investigate. Consequently, as multi-lines electrode was installed in side of anode, pre-discharges generated from anode electrode could be observed. This pre-discharge was generated from differences of permittivities between bubble and water in strong non-uniform electric field. And ion concentration in electrolytic water generator was increased by dissolving of ions generated from bubble discharge. So, as generated high concentration ions were separated and assembled to each electrode and reaction of oxidation/reduction was increased, it was shown that strong electrolytic water could be generated.

Deterministic manipulation and visualization of near field with ultra-smooth, super-spherical gold nanoparticles by atomic force microscopy

  • KIM, MINWOO;LEE, JOOHYUN;YI, GI-RA;LEE, SEUNGWOO;SONG, YOUNG JAE
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.111.1-111.1
    • /
    • 2015
  • As an alternative way to get sophisticated nanostructures, atomic force microscopy (AFM) has been used to directly manipulate building primitives. In particular, assembly of metallic nanoparticles(NPs) can provide various structures for making various metamolecules. As far, conventionally made polygonal shaped metallic NPs showed non-uniform distribution in size and shape which limit its study of fundamental properties and practical applications. In here, we optimized conditions for deterministic manipulation of ultra-smooth and super-spherical gold nanoparticles (AuNPs) by AFM. [1] Lowered adhesion force by using platinum-iridium coated AFM tips enabled us to push super-spherical AuNPs in linear motion to pre-programmed position. As a result, uniform and reliable electric/magnetic behaviors of assembled metamolecules were achieved which showed a good agreement with simulation data. Furthermore, visualization of near field for super-spherical AuNPs was also addressed using photosensitive azo-dye polymers. Since the photosensitive azo-dye polymers can directly record the intensity of electric field, optical near field can be mapped without complicated instrumental setup. [2] By controlling embedding depth of AuNPs, we studied electric field of AuNPs in different configuration.

  • PDF

A Study on the Optimum Design of the Piezoelectric Actuator Using the Finite Element Method (유한요소법을 이용한 압전 액츄에이터의 최적설계에 대한 연구)

  • 임춘기;범현규;양영수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.680-683
    • /
    • 1997
  • In this paper, the multilayer actuator is investigated by using the finite element method. The material is taken to be piezoelectric. The capacitor and interdigital wlfloating type actuator are compared to the stress field distribution under the uniform electric field. As the length of the floating electrode in the interdigital wlfloating actuator changes, the stress field around the edge of electrode is studied.

  • PDF