• 제목/요약/키워드: Uniform Temperature

검색결과 1,836건 처리시간 0.029초

Improvement of thermal buckling response of FG-CNT reinforced composite beams with temperature-dependent material properties resting on elastic foundations

  • Bensaid, Ismail;Kerboua, Bachir
    • Advances in aircraft and spacecraft science
    • /
    • 제6권3호
    • /
    • pp.207-223
    • /
    • 2019
  • Current investigation deals with the thermal stability characteristics of carbon nanotube reinforced composite beams (CNTRC) on elastic foundation and subjected to external uniform temperature rise loading. The single-walled carbon nanotubes (SWCNTs) are supposed to have a distribution as being uniform or functionally graded form. The material properties of the matrix as well as reinforcements are presumed to be temperature dependent and evaluated through the extended rule of mixture which incorporates efficiency parameters to capture the size dependency of the nanocomposite properties. The governing differential equations are achieved based on the minimum total potential energy principle and Euler-Bernoulli beam model. The obtained results are checked with the available data in the literature. Numerical results are supplied to examine the effects of numerous parameters including length to thickness ratio, elastic foundations, temperature change, and nanotube volume fraction on the thermal stability behaviors of FG-CNT beams.

Biot수를 고려한 균일두께의 환상휜에서의 과도열전달에 관한 연구 (A Study on the Transient Heat Transfer in Annular Fin with Uniform Thickness Considering Biot Number)

  • 김광수
    • 대한설비공학회지:설비저널
    • /
    • 제14권2호
    • /
    • pp.138-149
    • /
    • 1985
  • The heat diffusion equation for an annular fin is analyzed using Laplace transformations. The fin has a uniform thickness with its edge heat loss and two temperature profiles at the base such as a step change in temperature or heat flux. To obtain the exact solutions for temperature distribution, this paper can detect the eigenvalues which satisfy the roots of transcendental equations in above two cases during inverse Laplace transformations. The exact solutions for temperature and heat flux are obtained with the infinite Series by dimensionless factors. The solutions are developed for small and large values of times. These series solutions converge rapidly for large values of time, but slowly for small.

  • PDF

전산 열해석 DB를 이용한 초고온 진공로 최적설계 (Optimal Design of High Temperature Vacuum Furnace Using Thermal Analysis Database)

  • 리진철;박미영;변영환;이창진;이재우
    • 대한기계학회논문집B
    • /
    • 제30권6호
    • /
    • pp.594-601
    • /
    • 2006
  • Optimization study has been carried out to design an energy efficient, high temperature vacuum furnace which satisfies users' design requirements. First of all, the transient temperature distribution and the uniform temperature zone results have been compared with the steady state results to validate the feasibility of using steady state solution when constructing the thermal analysis DB. In order to check the accuracy, the interpolated results using thermal analysis DB have been compared with the computational and the experimental results. In this study, total heat flux is selected as the objective function, and the geometry parameters of vacuum furnace including the thickness of insulator, the heat zone sizes and the interval between heater and insulator are the design variables. The Uniform temperature zone sizes and the wall temperature are imposed as the design constraints. With negligible computational cost a high temperature vacuum furnace which has $40\sim60%$ reduction in total heat flux is designed using thermal analysis DB.

아래 평판이 미소한 불균일 온도를 갖는 두 수평 평판 사이에서의 자연 대류 : Pr=0.7 (NATURAL CONVECTION BETWEEN TWO HORIZONTAL PLATES WITH SMALL MAGNITUDE NON-UNIFORM TEMPERATURE IN THE LOWER PLATE : Pr=0.7)

  • 유주식
    • 한국전산유체공학회지
    • /
    • 제18권2호
    • /
    • pp.35-40
    • /
    • 2013
  • Natural convection of air with Pr=0.7 between two horizontal plates with small magnitude non-uniform temperature distribution[${\in}{\Delta}Tsin({\kappa}X/H)$, H : gap width, X : horizontal coordinate] in the lower plate is numerically(${\in}=0.01$) investigated. In the conduction-dominated regime with $Ra{\leq}1700$, two upright cells are formed over one wave length($2{\pi}/{\kappa}$). For small wave number, the flow becomes unstable with increase of Rayleigh number, and multicellular convection occurs above a critical Rayleigh number. The flow patterns are classified by the number of eddies over one wave length. When ${\kappa}=1$, a transition of $2{\rightarrow}4{\rightarrow}6$ eddy flow occurs with increase of Rayleigh number, and no hysteresis phenomenon is observed. Dual and triple solutions are found for ${\kappa}=1$, and transitions of $10{\rightarrow}8$, $8{\rightarrow}6$, $6{\rightarrow}4{\rightarrow}2$ eddy flow occur with decrease of Rayleigh number.

압출 블로우 성형에서 성형조건에 따른 성형특성 (Blow Characteristics in Extrusion Blow Molding for Operational Conditions)

  • 전재후;배유리;류민영
    • 소성∙가공
    • /
    • 제14권3호
    • /
    • pp.233-238
    • /
    • 2005
  • Blow molding is divided into three categories, injection stretch blow molding, injection blow molding, and extrusion or direct blow molding. Extrusion blow molding has been studied experimentally to characterize the blowing behavior of parison. Blow conditions such as blowing temperature and cooling time were the experimental variables in this blowing experiment. Wall thickness of the lower part of blow molded sample was thicker than that of the upper part because of the sagging of parison during extrusion process. As temperature increases the wall thickness and the weight of blow molded sample decreased. No thickness variations in the blowing sample were observed according to the cooling time. The lower part of the sample showed high degree of crystallinity compare with the upper part of the sample. Thus the lower part of the sample was strong mechanically and structurally. It was recognized that the uniform wall thickness could not be obtained by only controlling the operational conditions. Parison variator should be introduced to get uniform wall thickness of parison and subsequently produce uniform wall thickness of blow molded product.

Susceptor design by numerical analysis in horizontal CVD reactor

  • Lee, Jung-Hun;Yoo, Jin-Bok;Bae, So-Ik
    • 한국결정성장학회지
    • /
    • 제15권4호
    • /
    • pp.135-140
    • /
    • 2005
  • Thermal-fluid analysis was performed to understand the thermal behavior in the horizontal CVD reactor thereby to design a susceptor which has a uniform deposition rate during silicon EPI growing. Four different types of susceptor designs, standard (no hole susceptor), hole $\sharp$1 (240 mm), hole $\sharp$2 (150 mm) and hole $\sharp$3 (60 mm), were simulated by CFD (Computational Fluid Dynamics) tool. Temperature, gas flow, deposition rate and growth rate were calculated and analyzed. The degree of flatness of EPI wafer loaded on the susceptor was computed in terms of silicon growth rate. The simulation results show that the temperature and thermal distribution in the wafer are greatly dependent on inner diameter of hole susceptor and demonstrate that the introduction of hole in the susceptor can degrade wafer flatness. Maximum temperature difference appeared around holes. As the diameter of the hole decreases, flatness of the wafer becomes poor. Among the threes types of susceptors with the hole, optimal design which resulted a good uniform flatness ($5\%$) was obtained when using hole $\sharp$1.

OLED 소자 제조를 위한 주울 가열 봉지 공정 시 도전층 구조에 따르는 열분포 (Temperature Distribution According to the Structure of a Conductive Layer during Joule-heating Induced Encapsulation for Fabrication of OLED Devices)

  • 장인구;노재상
    • 한국표면공학회지
    • /
    • 제46권4호
    • /
    • pp.162-167
    • /
    • 2013
  • Encapsulation is required since organic materials used in OLED devices are fragile to water vapor and oxygen. Laser sealing method is currently used where IR laser is scanned along the glass-frit coated lines. Laser method is, however, not suitable to encapsulating large-sized glass substrate due to the nature of sequential scanning. In this work we propose a new method of encapsulation using Joule heating. Conductive layer is patterned along the sealing lines on which the glass frit is screen printed and sintered. Electric field is then applied to the conductive layer resulting in bonding both the panel glass and the encapsulation glass by melting glass-frit. In order to obtain uniform bonding the temperature of a conductive layer having a shape of closed loop should be uniform. In this work we conducted simulation for heat distribution according to the structure of a conductive layer used as a Joule-heat source. Uniform temperature was obtained with an error of 5% by optimizing the structure of a conductive layer. Based on the results of thermal simulations we concluded that Joule-heating induced encapsulation would be a good candidate for encapsulation method especially for large area glass substrate.

소방 기동복의 디자인과 소재 변화가 착용자의 온열생리 반응 및 주관적 감각에 미치는 영향 (Effects of Design and Material Change of Firefighter Station Uniform on Thermal Physiological and Subjective Responses)

  • 김희은;김성숙;손수영
    • 한국의류학회지
    • /
    • 제44권4호
    • /
    • pp.776-787
    • /
    • 2020
  • This study investigated physiological and subjective responses to different types of firefighter station uniforms made with various designs and materials. Six healthy males participated in this study that consisted of 20 min of rest, 30 min of treadmill exercise, and 30 min of recovery in a hot and humid environment (34℃ and 65%RH). The experimental clothing conditions were as follows. 1) a fitted T-shirt and trouser made of 100% polyester (FC-Uniform), and 2) flame retardant T-shirts made of acrylic and cotton as well as trousers with aramid and polyester, designed for overfitting (Control). There were no significant differences in the body temperature, and sweat rate between the two conditions; however, the heart rate with the FC-Uniform was significantly lower than Control (p=.025). The clothing microclimate temperature at the chest of the FC-Uniform was significantly lower than the Control (p=.037), and a difference of 1℃ was maintained until the recovery was complete. There were no significant differences in the subjective responses; however, participants experienced a humidity sensation faster with FC-Uniform in the recovery phase. The results indicate that changes in the design and material of firefighter station uniforms may have a positive influence on reducing the thermal stress of firefighters.

PEMFC 금속 분리판용 316L 스테인리스강의 전기화학적 특성 및 손상 거동에 미치는 온도 및 염화물 농도의 영향 (Effects of Temperature and Chloride Concentration on Electrochemical Characteristics and Damage Behavior of 316L Stainless Steel for PEMFC Metallic Bipolar Plate)

  • 신동호;김성종
    • Corrosion Science and Technology
    • /
    • 제21권4호
    • /
    • pp.300-313
    • /
    • 2022
  • Interest in polymer electrolyte fuel cell is growing to replace fossil fuels. In particular, in order to reduce the cost and volume of the fuel cell, research on a metallic bipolar plate is being actively conducted. In this research, investigated the effects of temperature and chloride concentration on the electrochemical characteristics and damage behavior of 316L stainless steel in an accelerated solution simulating the cathodic operating condition of PEMFC(Polymer electrolyte membrane fuel cell). As a result of the experiments, the corrosion current density, damage size, and surface roughness increased as the temperature and chloride concentration increased. In particular, the temperature had a significant effect on the stability of the oxide film of 316L stainless steel. In addition, it was described that the growth of the pit was affected by the chloride concentration rather than the temperature. As a result of calculating the corrosion tendency to compare the pitting corrosion rate and the uniform corrosion rate, the uniform corrosion tendency became larger as the temperature increased. And the effects of chloride concentration on corrosion tendency was different according to temperature.

A Study on the Physiological Properties of Skating Players : Skin Temperature and Clothing Temperature in Body Parts

  • Jeon, Hyang-ran
    • 한국의류산업학회지
    • /
    • 제2권5호
    • /
    • pp.423-429
    • /
    • 2000
  • This study was conducted to find out the relationship between skin temperature and clothing temperature in body parts. Four different kinds of fabrics were used in this experiment. These fabrics were a (Ny/Spun, 81.8/18.2%), b (Wool/Poly/span, 50/45/5%), (Wool/Ny/Span70/25/5) and d (Wool/Poly/Span 45/45/10%). The subjects skated at indoor ice rink where the length was 111.12 m, the temperature was $11{\pm}1^{\circ}C$ and the humidity was $70{\pm}10%$. The four an male professional skaters speed was $17{\pm}1$ seclm/lap. Physiological parameters were skin temperature at 4 body points (chest, upper arm, thigh, leg) and clothing temperature at chest was measured every 15 second. Experiment protocol was as follows: resting before skating (5 min.), skating (5 min.), and resting after skating (10 min.). The results were as follows; The mean skin temperature by fabrics shows b > a > d > c. The mean skin temperature began to decline little by little as soon as the subjects entered the indoor ice rink. After they rested for five minutes, they started skating and the mean skin temperature declined widely. After skating, the mean skin temperature increased step by step. It maintained the similar temperature. The value of skin temperature at body points shows Leg > Chest > Upper arm > Thigh. Because of the characteristics of skating uniforms, the skin temperature of the leg is the highest. The skating uniform was designed to have a protective portion in the leg. The chest produces the highest temperature in the body. The comparison of difference values in skin temperature show Thigh > Upper arm > Chest > Leg. While skating in a cold atmosphere, the largest difference value is clothing temperature. The clothing temperature is lower than the skin temperature during skating. The difference value of clothing temperature is larger than the skin temperature of the chest.

  • PDF