• Title/Summary/Keyword: Uniform Temperature

Search Result 1,827, Processing Time 0.027 seconds

Electrical Properties of BaTiO3 Thick Films Fabricated by Screen-printing Method

  • Ahn, Byeong-Lib;Lee, Sung-Gap
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.4
    • /
    • pp.149-152
    • /
    • 2007
  • [ $(Ba_{0.6}Sr_{0.3}Ca_{0.1})TiO_3$ ](BSCT) thick films doped with 0.1 mol% $MnCO_3\;and\;Yb_2O_3(0.1{\sim}0.7mol%)$ were fabricated by the screen printing method on the alumina substrates. And the structural and electrical properties as a function of $Yb_2O_3$ amount were investigated. The exothermic peak was observed at around $680^{\circ}C$ due to the formation of the poly crystalline perovskite phase. The lattice constants of the BSCT thick film doped with 0.7 mol% is 0.3994 nm. The specimen doped with 0.7 mol% $Yb_2O_3$ showed dense and uniform grains with diameters of about $4.2{\mu}m$. The average thickness of all BSCT thick films was approximately $70{\mu}m$. Relative dielectric constant and dielectric loss of the specimen doped with 0.7 mol% $Yb_2O_3$ were 2823 and 3.4%, respectively. The Curie temperature of the BSCT thick films doped with 0.1 mol% $Yb_2O_3$ was $46^{\circ}C$.

Effect of ceramic powder addition on the insulating properties of polymer layer prepared by dip coating method

  • Kim, S.Y.;Lee, J.B.;Kwon, B.G.;Hong, G.W.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.1
    • /
    • pp.14-18
    • /
    • 2014
  • The mechanical, electrical and thermal characteristics of insulating materials may significantly affect the performance and reliability of electrical devices using superconductors. General method to provide insulating layer between coated conductors is wrapping coated conductor with Kapton tape. But uniform and compact wrapping without failure or delamination in whole coverage for long length conductor is not a simple task and need careful control. Coating of insulating layer directly on coated conductor is desirable for providing compact insulating layer rather than wrapping insulating layers around conductor. Ceramic added polymer has been widely used as an insulating material for electric machine because of its good electrical insulating properties as well as excellent heat resistance and fairy good mechanical properties. The insulating layer of coated conductor should have high breakdown voltage and possesses suitable mechanical strength and maintain adhesiveness at the cryogenic temperature where it is used and withstand stress from thermal cycling. The insulating and mechanical properties of polymer can be improved by adding functional filler. In this study, insulating layer has been made by adding ceramic particles such as $SiO_2$ to a polymer resin. The size, amount and morphology of added ceramic powder was controlled and their effect on dielectric property of the final composite was measured and discussed for optimum composite fabrication.

Compressive Shear and Bending Performance of Compressed Laminated Wood after Microwave Heating

  • Park, Cheul-Woo;Lim, Nam-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.5
    • /
    • pp.539-547
    • /
    • 2012
  • To manufacture laminated wood with improved mechanical properties by providing uniform adhesiveness, the adhesive was applied and the plate adhesive was laminated on the wood surface. Then, after laminating the wood on the top part of the adhesivebond, it was heated and dried while the adhesive was stiffened using microwaves, and the test piece was manufactured by compressing it with the press machine for thirty minutes. The temperature and the water content were examined according to the heating time of the wood heated with the microwave, and testing was conducted on the shear strength and flexural strength of the wood. In addition, the microstructure of the adhesive bond between the wood was recorded to confirm the penetrabilityinto the wood structure for the adhesive. After the test was conducted, it was found that the test piece manufactured with wood that has its water content leveled with the microwave heating showed improved shear strength and bending strength compared to the standard test piece. With regard to adhesives, liquefied polyvinyl acetate resin and plate's PVB resin were found to have superior adhesive strength. Also, after filming the cellular microstructure, it was found that when the laminated wood is heated with microwaves, the infiltration of the adhesive into the inside of the wood becomes easy, which makes it effective for improving adhesiveness.

Preparation and characterization of TiO2 membrane on porous 316 L stainless steel substrate with high mechanical strength

  • Mohamadi, Fatemeh;Parvin, Nader
    • Membrane and Water Treatment
    • /
    • v.6 no.3
    • /
    • pp.251-262
    • /
    • 2015
  • In this work the preparation and characterization of a membrane containing a uniform mesoporous Titanium oxide top layer on a porous stainless steel substrate has been studied. The 316 L stainless steel substrate was prepared by powder metallurgy technique and modified by soaking-rolling and fast drying method. The mesoporous titania membrane was fabricated via the sol-gel method. Morphological studies were performed on both supported and unsupported membranes using scanning electron microscope (SEM) and field emission scanning microscope (FESEM). The membranes were also characterized using X-ray diffraction (XRD) and $N_2$-adsorption / desorption measurement (BET analyses). It was revealed that a defect-free anatase membrane with a thickness of $1.6{\mu}m$ and 4.3 nm average pore size can be produced. In order to evaluate the performance of the supported membrane, single-gas permeation experiments were carried out at room temperature with nitrogen gas. The permeability coefficient of the fabricated membrane was $4{\times}10^{-8}\;lit\;s^{-1}\;Pa^{-1}\;cm^{-1}$.

A simple analytical approach for thermal buckling of thick functionally graded sandwich plates

  • El-Haina, Fouzia;Bakora, Ahmed;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.63 no.5
    • /
    • pp.585-595
    • /
    • 2017
  • This study aimed to presents a simple analytical approach to investigate the thermal buckling behavior of thick functionally graded sandwich by employing both the sinusoidal shear deformation theory and stress function. The material properties of the sandwich plate faces are continuously varied within the plate thickness according to a simple power-law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic material. The thermal loads are considered as uniform, linear and non-linear temperature rises across the thickness direction. Numerical examples are presented to prove the effect of power law index, loading type and functionally graded layers thickness on the thermal buckling response of thick functionally graded sandwich.

Thermal buckling analysis of functionally graded carbon nanotube-reinforced composite sandwich beams

  • Ebrahimi, Farzad;Farazmandnia, Navid
    • Steel and Composite Structures
    • /
    • v.27 no.2
    • /
    • pp.149-159
    • /
    • 2018
  • Thermo-mechanical buckling of sandwich beams with a stiff core and face sheets made of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) within the framework of Timoshenko beam theory is presented. The material properties of FG-CNTRC are supposed to vary continuously in the thickness direction and are estimated through the rule of mixture. Also the properties of these materials should be considered temperature dependent. The governing equations and boundary conditions are derived by using Hamilton's principle and solved using an efficient technique called the Differential Transform Method (DTM) to achieve the critical buckling of the sandwich beam in uniform thermal environment. A detailed parametric study is guided to investigate the effects of carbon nanotube volume fraction, slenderness ratio, core-to-face sheet thickness ratio, and clamped-clamped, simply-simply and clamped-simply end supports on the critical buckling behavior of sandwich beams with FG-CNTRC face sheets. Numerical results for comparison of sandwich beams with uniformly distributed carbon nanotube-reinforced composite (UD-CNTRC) face sheets with those with FG-CNTRC face sheets are also presented.

A novel and simple HSDT for thermal buckling response of functionally graded sandwich plates

  • Elmossouess, Bouchra;Kebdani, Said;Bouiadjra, Mohamed Bachir;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.62 no.4
    • /
    • pp.401-415
    • /
    • 2017
  • A new higher shear deformation theory (HSDT) is presented for the thermal buckling behavior of functionally graded (FG) sandwich plates. It uses only four unknowns, which is even less than the first shear deformation theory (FSDT) and the conventional HSDTs. The theory considers a hyperbolic variation of transverse shear stress, respects the traction free boundary conditions and contrary to the conventional HSDTs, the present one presents a new displacement field which includes undetermined integral terms. Material characteristics and thermal expansion coefficient of the sandwich plate faces are considered to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic material. The thermal loads are supposed as uniform, linear and non-linear temperature rises within the thickness direction. An energy based variational principle is used to derive the governing equations as an eigenvalue problem. The validation of the present work is carried out with the available results in the literature. Numerical results are presented to demonstrate the influences of variations of volume fraction index, length-thickness ratio, loading type and functionally graded layers thickness on nondimensional thermal buckling loads.

A study on the performance of the finned tube heat exchanger affected by the frosting using CFD tool (전산해석을 이용한 착상이 핀튜브 열교환기 성능에 미치는 영향에 관한 연구)

  • Kim, Sung-Jool;Choi, Ho-Jin;Ha, Man-Yeong;Bang, Seon-Wook
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2738-2743
    • /
    • 2008
  • We conducted a study by computational simulation about the effects of frost thickness on the pressure drop and heat transfer characteristics as whole heat exchanger configuration changes. In order to perform the analysis for validation, we assumed that frost properties have constant values and the frost layers that are formed on the fin and tube surfaces are uniform. In order to find the constant thermal conductivity of frost layer, a variety of frost thermal conductivities are performed in our work and compared with the results by Lee et al. [4] and Yang et al. [5] proposed many experimental data about the 2-rows and 2-columns finned tube heat exchanger. The numerical results agreed well with the experimental data when frost conductivity is 0.07W/mK. After the validation had performed, we applied this procedure to the finned tube heat exchanger of domestic refrigeration and investigated the thermo-hydraulic characteristic of the heat exchanger affected by frost thickness according to the inlet velocities and temperatures of air considering the configuration change such as fin pitch.

  • PDF

Optimization of Material and Process for Fine Pitch LVSoP Technology

  • Eom, Yong-Sung;Son, Ji-Hye;Bae, Hyun-Cheol;Choi, Kwang-Seong;Choi, Heung-Soap
    • ETRI Journal
    • /
    • v.35 no.4
    • /
    • pp.625-631
    • /
    • 2013
  • For the formation of solder bumps with a fine pitch of 130 ${\mu}m$ on a printed circuit board substrate, low-volume solder on pad (LVSoP) technology using a maskless method is developed for SAC305 solder with a high melting temperature of $220^{\circ}C$. The solder bump maker (SBM) paste and its process are quantitatively optimized to obtain a uniform solder bump height, which is almost equal to the height of the solder resist. For an understanding of chemorheological phenomena of SBM paste, differential scanning calorimetry, viscosity measurement, and physical flowing of SBM paste are precisely characterized and observed during LVSoP processing. The average height of the solder bumps and their maximum and minimum values are 14.7 ${\mu}m$, 18.3 ${\mu}m$, and 12.0 ${\mu}m$, respectively. It is expected that maskless LVSoP technology can be effectively used for a fine-pitch interconnection of a Cu pillar in the semiconductor packaging field.

HPA MMIC to W/G Antenna Transition Loss Analysis and Development Results of W-band Transmitter Module

  • Kim, Wansik;Jung, Juyong;Lee, Juyoung;Kim, Jongpil
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.236-241
    • /
    • 2019
  • This paper will read about a multichannel frequency-modulated continuous wave (FMCW) radar sensor with switching transmit (TX) antennas is developed at W-band. To achieve a high angular resolution, a uniform linear array consisting of 5 switching-TX and 12 receive (RX) antennas is employed with the digital beamforming technique. The overall radar front-end module comprises a W-band transceiver and TX/RX antennas. A multichannel transceiver module consists of 5 up-conversion and 12 down-conversion channels, where one of the TX channels is sequentially switched ON. For developing transmitter, we developed an HPA (high power amplified) MMIC chip for W-band radar system and fabricated a transmitter module using this chip. In order to develop the W-band transmitter, we analyzed the important antenna transition structure from HPA MMIC line to W/G (Waveguide)antenna via M/S(microstrip) and fabricated it with 5 transmission channels. As a result, the output power of the transmitter was within 1 dB of the error range after analysis and measurement under normal temperature and environmental conditions.