• Title/Summary/Keyword: Uniform Temperature

Search Result 1,837, Processing Time 0.027 seconds

Structural and Electrical Properties of K(Ta0.70Nb0.30)O3/K(Ta0.55Nb0.45)O3 Heterolayer Thin Films for Electrocaloric Devices (전기 열량 소자로의 응용을 위한 K(Ta0.70Nb0.30)O3/K(Ta0.55Nb0.45)O3 이종층 박막의 구조적, 전기적 특성)

  • Byeong-Jun Park;Ji-Su Yuk;Sam-Haeng Yi;Myung-Gyu Lee;Joo-Seok Park;Sung-Gap Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.3
    • /
    • pp.297-303
    • /
    • 2024
  • In this study, KTN heterolayer thin films were fabricated by alternately stacking films of K(Ta0.70Nb0.30)O3 and K(Ta0.55Nb0.45)O3 synthesized using the sol-gel method. The sintering temperature and time were 750℃ and 1 hour, respectively. All specimens exhibited a polycrystalline pseudo-cubic crystal structure, with a lattice constant of approximately 0.398 nm. The average grain size was around 130~150 nm, indicating relatively uniform sizes regardless of the number of coatings. The average thickness of a single-coated film was approximately 70 nm. The phase transition temperature of the KTN heterolayer films was found to be approximately 8~12℃. Moreover, the 6-coated KTN heterolayer film displayed an excellent dielectric constant of about 11,000. As the number of coatings increased, and consequently the film thickness, the remanent polarization increased, while the coercive field decreased. The 6-coated KTN heterolayer film exhibited a remanent polarization and coercive field of 11.4 μC/cm2 and 69.3 kV/cm at room temperature, respectively. ΔT showed the highest value at a temperature slightly above the Curie temperature, and for the 6-coated KTN heterolayer film, the ΔT and ΔT/ΔE were approximately 1.93 K and 0.128×10-6 K·m/V around 40℃, respectively.

Study on the Formation of SiO2:F films Using Liquid Phase Deposition (액상증착법에 의한 산화막 형성에 관한 연구)

  • Lee, S.K.;Kim, C.J.;Chanthamaly, P.;Haneji, N.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1559-1562
    • /
    • 1999
  • We formed $SiO_2:F$ films by low-temperature process called Liquid Phase Deposition(LPD) and investigated its electrical and physical properties. Because of the use of room-temperature and no special vacuum apparatus for forming $SiO_2:F$ films, this technique can have some advantages related with the application to dielectric interlayer for multilevel structure in ULSI devices. The growth rate 100nm/hr was obtained at the growth solution of 2.5mol/l. The P-etch rate showed a similar or better tendency compared with $SiO_2$ films formed by CVD, Sputter, E-beam evaporator etc.. The fourier transform infrared (FTIR) spectra revealed that the contained fluorine atoms exist uniform throughout the formed $SiO_2$ films. The Scanning Electron Microscope images showed that LPD-$SiO_2$ films could be stably grown on silicon substrates and the good step-coverage could also be obtained, which indicates that the LPD-$SiO_2$ films have some possibility of the application to planarization and interlayer dielectric films which are vitally necessary to achieve the multilevel interconnection in ULSI. The I-V characteristics has some distinct differences according to the concentration of growth solution.

  • PDF

Freezing and Bearing Capacity Characteristics of Road Foundations under Temperature Condition (온도조건에 의한 도로하부 지반의 동결 및 지지력 특성)

  • Shin, Eun-Chul;Kim, Sung-Hwan;Park, Jeong-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.3
    • /
    • pp.5-14
    • /
    • 2012
  • In the current design codes for anti-freezing layer, the thickness of anti-freezing layer is calculated by freezing depth against the temperature condition. Therefore, they have a tendency of over-design and uniform thickness without the considerations of thermal stability, bearing capacity and frost susceptibility of materials. So, it is essential for studying the appropriateness and bearing capacity of road foundation materials as well as their seasonal and mechanical properties to take an appropriate and reasonable design of the road structure system. In this paper, the freezing and bearing capacity characteristics of typical road foundation materials were evaluated in the large scale laboratory test. LFWD (light falling weight deflectometer) was used to determine the change of elastic modulus ($E_{LFWD}$) caused by to the frost heave and thaw. Furthermore, the influence of crushed natural aggregate on the freezing of the subgrade soil was studied to verify the function and effectiveness of the anti-freezing layer.

Development of Thermal Storage System in Plastic Greenhouse (I) -Development of Air-Water Heat Exchange System- (플라스틱 온실(溫室)의 열저장(熱貯藏) 시스템 개발(開發)에 관(關)한 연구(硏究)(I) -수막식(水膜式) 열교환(熱交換) 시스템의 개발(開發)-)

  • Kim, Y.H.;Koh, H.K.;Kim, M.K.
    • Journal of Biosystems Engineering
    • /
    • v.15 no.1
    • /
    • pp.14-22
    • /
    • 1990
  • For efficient use of solar energy in plastic greenhouse, thermal storage system was developed. The system was constructed with the counter-flow type air-water heat exchanger using a thin polyethylene film as a medium of heat exchange parts. Experiments were carried out to investigate the heat exchange rate, optimum water flow rate, overall heat transfer coefficient, and the effectiveness of the counter-flow type air-water heat exchanger with polyethylene film bags. Mathematical model to predict air temperature leaving heat exchanger was developed. The results obtained in the present study are summarized as follows. 1. Heat exchange rate in the counter-flow type air-water heat exchanger with polyethylene film bags was compared to that of polyethylene film. Heat exchange rate was almost identical at air velocity of 0.5m/s on polyethylene film surface. But, heat exchange rate of heat exchanger with polyethylene film bag was $32{\sim}55KJ/m^2$ hr higher than that of polyethylene film at air velocity of 1.0m/s. 2. Considering the formation of uniform water film and the sufficient heat exchange rate of polyethylene film bags, optimum water flow rate in polyethylene film bags was $3.0{\sim}6.0{\ell}/m^2$ min. 3. The overall heat transfer coefficient of polyethylene film bags was found to be $35.0{\sim}130.0KJ/m^2\;hr\;^{\circ}C$ corresponding to the air velocity ranging 0.5 to 4.0 m/s on polyethylene film surface. And the overall heat transfer coefficient showed almost linearly increasing tendency to the variation of air velocity. 4. Mathematical model to predict air temperature leaving the heat exchanger was developed, resulting in a good agreement between the experimental and predicted values. But, the experimental results were a little lower than predicted. 5. Effectiveness of heat exchanger for the experiment was found to be 0.40~0.81 corresponding to the number of transfer units due to the variation of air velocity ranging 0.6 to 1.7 m/s.

  • PDF

Flexural Strength and Dielectric Properties of in-situ Si3N4-SiO2-BN Composite Ceramics (반응소결된 Si3N4-SiO2-BN 복합체의 기계적 강도 및 유전물성에 관한 연구)

  • Lee, Hyun Min;Lee, Seung Jun;Baek, Seungsu;Kim, Do Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.386-391
    • /
    • 2014
  • Silicon nitride ($Si_3N_4$) is regarded as one of the most promising materials for high temperature structural applications due to its excellent mechanical properties at both room and elevated temperatures. However, one high-temperature $Si_3N_4$ material intended for use in radomes has a relatively high dielectric constant of 7.9 - 8.2 at 8 - 10 GHz. In order to reduce the dielectric constant of the $Si_3N_4$, an in-situ reaction process was used to fabricate $Si_3N_4-SiO_2$-BN composites. In the present study, an in-situ reaction between $B_2O_3$ and $Si_3N_4$, with or without addition of BN in the starting powder mixture, was used to form the composite. The in-situ reaction process resulted in the uniform distribution of the constituents making up the composite ceramic, and resulted in good flexural strength and dielectric constant. The composite was produced by pressure-less sintering and hot-pressing at $1650^{\circ}C$ in a nitrogen atmosphere. Microstructure, flexural strength, and dielectric properties of the composites were evaluated with respect to their compositions and sintering processes. The highest flexural strength (193 MPa) and lowest dielectric constant (5.4) was obtained for the hot-pressed composites. The strength of these $Si_3N_4-SiO_2$-BN composites decreased with increasing BN content.

Nonlinear thermal buckling behavior of functionally graded plates using an efficient sinusoidal shear deformation theory

  • Bouiadjra, Rabbab Bachir;Bedia, E.A. Adda;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.48 no.4
    • /
    • pp.547-567
    • /
    • 2013
  • Nonlinear behavior of functionally graded material (FGM) plates under thermal loads is investigated here using an efficient sinusoidal shear deformation theory. The displacement field is chosen based on assumptions that the in-plane and transverse displacements consist of bending and shear components, and the shear components of in-plane displacements give rise to the sinusoidal distribution of transverse shear stress through the thickness in such a way that shear stresses vanish on the plate surfaces. Therefore, there is no need to use shear correction factor. Unlike the conventional sinusoidal shear deformation theory, the proposed efficient sinusoidal shear deformation theory contains only four unknowns. The material is graded in the thickness direction and a simple power law based on the rule of mixture is used to estimate the effective material properties. The neutral surface position for such FGM plates is determined and the sinusoidal shear deformation theory based on exact neutral surface position is employed here. There is no stretching-bending coupling effect in the neutral surface-based formulation, and consequently, the governing equations and boundary conditions of functionally graded plates based on neutral surface have the simple forms as those of isotropic plates. The non-linear strain-displacement relations are also taken into consideration. The thermal loads are assumed as uniform, linear and non-linear temperature rises across the thickness direction. Closed-form solutions are presented to calculate the critical buckling temperature, which are useful for engineers in design. Numerical results are presented for the present efficient sinusoidal shear deformation theory, demonstrating its importance and accuracy in comparison to other theories.

Fabrication of C2H2 Gas Sensors Based on Ag-Doped Hierarchical ZnO Nanostructures and Their Characteristics (Ag가 도핑된 계층적 ZnO 나노구조 기반 C2H2 가스센서의 제작과 그 특성)

  • Lee, Kwan-Woo;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.397-401
    • /
    • 2014
  • This paper describes the fabrication and characteristics of $C_2H_2$ gas sensor based on Ag-doped hierarchical ZnO nanostructures. In this work, a pure hierarchical ZnO structure was prepared using a simple hydrothermal method, and Ag nanoparticles doped the hierarchical ZnO structure were uniformly synthesized through photochemical route. The synthesized samples were characterized by SEM, TEM, EDS, XRD and PL spectra. Average size of prepared ZnO structures was around $2{\sim}3{\mu}m$ and showed highly uniform. The average size of Ag nanoparticles was 70 nm. The gas sensing properties of as-prepared products were investigated using resistivity-type gas sensors. 5 at% Ag-doped ZnO based sensors exhibited good performances for $C_2H_2$ gas in comparison with the un-doped one. The sensor based on Ag-doped hierarchical ZnO structures had linear response property from 5~1000 ppm of $C_2H_2$ concentration at working temperature of $200^{\circ}C$. The response values with 100 ppm $C_2H_2$ at $200^{\circ}C$ were 10% and 75% for pure and 5 at% Ag-doped hierarchical ZnO nanostructures, respectively. Moreover, the device showed excellent selectivity towards to $C_2H_2$ gas at optimal working temperature of $200^{\circ}C$.

Numerical study on the transient operation characteristics of the heat pipe cooling system with the multiple uniform heating components for broadband digital cross-connect system (다수의 균일발열부품이 접촉된 광대역 회선분배 시스템 냉각용 히트파이프 시스템의 비정상 동작특성에 관한 수치적 연구)

  • No, Hong-Gu;Lee, Jae-Heon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.6
    • /
    • pp.734-749
    • /
    • 1998
  • A numerical study t predict the characteristics on transient operation of the heat pipe cooling system with multiple heaters for electronic system has been performed. The heat pipe cooling system of 45 cm length and 16 mm diameter was composed of evaporator section with four heaters which simulate electronic components, insulated transport section, and condenser section with a conductor which was cooled under the constant heat flux boundary condition. Two test cases were investigated in present study; Case 1 indicated that the 1st and 2nd heaters among four heaters were heated off, while the 3rd and the 4th heaters were heated on. Case 2 was the inverse situation switched from heating locations of Case 1. Case 3 indicated that the 1st and 4th heaters among four heaters were heated off, while the 2nd and 3rd heaters were heated on. The results showed that the transient time to reach the steady state is shorter for Case 1 than for Case 2. Especially, the maximum temperature among the heaters which simulate electronic components during switching operation is relatively small compared to the maximum allowable operating temperature in electronic system. It is concluded that the heat pipe cooling system in present study operate with the good thermal reliability even for sudden switching situation of the heaters.

Optimum Design of Liquid Cooling Heat Exchangers and Cooling-Fluid Distributors for a Amplifier Cabinet of Telecommunication Equipment (통신장비용 앰플리파이어 액체냉각장치 및 냉각유체 분배기의 최적설계 및 성능특성)

  • Yun, Rin;Kim, Yong-Chan;Kim, Hyun-Jong;Choi, Jong-Min;Cheon, Deok-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.1
    • /
    • pp.24-30
    • /
    • 2006
  • Three liquid cooling heat exchangers for cooling of telecommunication equipment were designed and their cooling performances were tested. The liquid cooling heat exchangers had twelve rectangular channels $(5\times3 mm)$ with different flow paths of 1, 4, and 12. Silicon rubber heaters were used to provide heat flux to the test section. Heat input was varied from 75 to 400 W, while flow rate and inlet temperature of working fluid were altered from 1.2 to 4.0 liter/fin and from 15 to 3$30^{\circ}C$, respectively. The 4-path heat exchanger showed lower and more uniform average inner temperatures between heaters and the surface of heat exchanger than those of the others. To obtain optimal distribution of working fluid to each channels of liquid cooling heat exchangers, 2-3-2 and 4-3 type tube distributors were designed, and their distribution performances of working fluid were numerically and experimentally investigated. The distributor of the 2-3-2 type showed superior distribution performance compared with those of the 4-3 type distributor.

Interfacial Properties and Sensing of Carbon Nanofiber/Tube and Electrospun Nanofiber/Epoxy Composites Using Electrical Resistance Measurement and Micromechanical Technique (전기저항측정 및 미세역학시험법을 이용한 탄소나노섬유/튜브 및 전기방사된 나노섬유/에폭시 복합재료의 계면특성 및 감지능 연구)

  • Jung Jin-Gyu;Kim Sung-Ju;Park Joung-Man
    • Composites Research
    • /
    • v.18 no.4
    • /
    • pp.21-26
    • /
    • 2005
  • Nondestructive damage sensing and load transfer mechanisms of carbon nanotube (CNT) and nanofiber (CNF)/epoxy composites have been investigated by using electro-micromechanical technique. The electrospun PVDF nanofibers were also prepared as a piezoelectric sensor. The electro-micromechanical techniques were applied to evaluate sensing response of carbon nanocomposites by measuring electrical resistance under an uniform cyclic loading. Composites with higher volume content of CNT showed significantly higher tensile properties than neat and low volume$\%$ CNT composites. CNT composites showed humidity sensing within limited temperature range. CNT composites with smaller aspect ratio showed higher apparent modulus due to high volume content in case of shorter aspect ratio. Thermal treated electrospun PVDF nanofiber showed higher mechanical properties than the untreated case due to crystallinity increase, whereas load sensing decreased in heat treated case. Electrospun PVDF nanofiber web also showed sensing effect on humidity and temperature as well as stress transferring. Nanocomposites and electrospun PVDF nanofiber web can be applicable for sensing application.