• Title/Summary/Keyword: Uniform Temperature

Search Result 1,837, Processing Time 0.032 seconds

Effect of Temperature and Leaf Wetness Period on the Components of Resistance to Late Leaf Spot Disease in Groundnut

  • Pande, Suresh;Rajesh, T.Ratna;Kishore, G.Krishna
    • The Plant Pathology Journal
    • /
    • v.20 no.1
    • /
    • pp.67-74
    • /
    • 2004
  • A complete understanding of the epidemiological factors required for optimum for disease development facilitates the design of effective and reliable screening techniques and also disease prediction models. An attempt was made to study the effects of different temperatures ($15-35^{\circ}C$) and leaf wetness periods (4-24 h) on the development of late leaf spot (LLS) in three groundnut genotypes differing in their susceptibility to LLS infection. Irrespective of the genotype, the disease progress evaluated based on different components of resistance was maximum between $15-20^{\circ}C$ and minimum between $20-25^{\circ}C$. At temperatures $\geq$$30^{\circ}C$, LLS development was insignificant. The overall severity of LLS increased with an increase in the leaf wetness period from 4 h to 12 h a day. Further increase of wetness period to 16 h resulted in a rapid increase in the severity. Thereafter, the disease severity gradually decreased with an increase in the wetness period. The effect of temperature and wetness periods on the individual component of disease quantification was not uniform compared between genotypes with different levels of susceptibility/resistance to LLS infection. The results of this study indicate that temperature and leaf wetness period are critical in late leaf spot screening programs since the expression of disease symptoms measured from disease initiation till defoliation, varied differently in the test genotypes with respect to change in these two parameters.

Emission and Structural Properties of Titanium Oxide Nanoparticles-coated a-plane (11-20) GaN by Spin Coating Method

  • Kim, Ji-Hoon;Son, Ji-Su;Baik, Kwang-Hyeon;Park, Jung-Ho;Hwang, Sung-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.146-146
    • /
    • 2011
  • The blue light emitting diode (LED) structure based on non-polar a-plane (11-20) GaN which was coated TiO2 nanoparticles using spin coating method was grown on r-plane (1-102) sapphire substrates to improve light extraction efficiency. We report on the emission and structural properties with temperature dependence of photoluminescence (PL) and x-ray rocking curves (XRC). From PL results at 13 K of undoped GaN samples, basal plane stacking fault (BSF) and near band edge (NBE) emission peak were observed at 3.434 eV and 3.484 eV, respectively. We also found the temperature-induced band-gap shrinkage, which was fitted well with empirical Varshini's equation. The PL intensity of TiO2 nanoparticles ?coated multiple quantum well (MQW) sample is decayed slower than that of no coating sample with increasing temperature. The anisotrophic strain and azimuth angle dependence in the films were shown from XRC results. The full width at half maximum (FWHM) along the GaN [11-20] and [1-100] directions were 564.9 arcsec and 490.8 arcsec, respectively. A small deviation of FWHM values at in-plane direction is attributed to uniform in-plane strain.

  • PDF

A Study on Wear Sensations of Tecel Fabrics in Hot Environments (서열환경 하에서의 텐셀소재 의복의 착용감 연구)

  • 권오경;송민규;이창미
    • Journal of the Korean Home Economics Association
    • /
    • v.38 no.3
    • /
    • pp.149-161
    • /
    • 2000
  • The purpose of the study was to examine the effect of Tencel fabrics on physiological reactions of a human body and thermal comfort under the hot environment. The 3 females subjects in their twenties were selected and a wear sensation test of the subjects was performed with four experimental ensembles made of cotton and Tencel fabrics for the study in the hot environment(3$0^{\circ}C$, 70%RH). The resets of the test were summarized as follows: For the mean skin temperature, Tencel garments showed about 0.2$^{\circ}C$-0.4$^{\circ}C$ lower than that of the cotton garment. The temperature of the rectal was 0.2$^{\circ}C$-0.4$^{\circ}C$ lower for Tencel garments than that for the colon garment. In the form of ensembles, the order of rectal temperature of the subjects for both Tencel and cotton ensembles was 1>IV>III>II. In the body weight loss according to garment materials, Tencel had a lower and more uniform than the cotton Thus, it could concluded that if the perspiration took into account, garments made of Tencel can be more ideal than that of the cotton. The heart rate and oxygen consumption appeared to be proportional to each other. For the heart rate, ensemble TI and TII of Tencel were much lower than ensemble CI and CII. For whole enembles except for TIV, Tencel ensembles showed relatively better thermal sensation and comfort sensation than the cotton ensembles. In the fatigue sensation, the reactions of the subjects were “slightly fatigue” and “fatigue” for the cotton, but “neutral” and “slightly fatigue” for Tencel.

  • PDF

Change in Microstructure and Mechanical Properties through Thickness with Annealing of a Cu-3.0Ni-0.7Si Alloy Deformed by Differential Speed Rolling (이속압연된 Cu-3.0Ni-0.7Si 합금의 어닐링에 따른 두께방향으로의 미세조직 및 기계적 특성 변화)

  • Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.28 no.5
    • /
    • pp.295-300
    • /
    • 2018
  • Effects of annealing temperature on the microstructure and mechanical properties through thickness of a Cu-3.0Ni-0.7Si alloy processed by differential speed rolling are investigated in detail. The copper alloy with a thickness of 3 mm is rolled to a 50 % reduction at ambient temperature without lubricant and subsequently annealed for 0.5 h at $200-900^{\circ}C$. The microstructure of the copper alloy after annealing is different in the thickness direction depending on the amount of the shear and compressive strain introduced by the rolling; the recrystallization occurs first in the upper roll side and center regions which are largely shear-deformed. The complete recrystallization occurs at an annealing temperature of $800^{\circ}C$. The grain size after the complete recrystallization is finer than that of the conventional rolling. The hardness distribution of the specimens annealed at $500-700^{\circ}C$ is not uniform in the thickness direction due to partial recrystallization. This ununiformity of hardness corresponds well to the amount of shear strain in the thickness direction. The average hardness and ultimate tensile strength has the maximum values of 250 Hv and 450 Mpa, respectively, in the specimen annealed at $400^{\circ}C$. It is considered that the complex mode of strain introduced by rolling directly affects the microstructure and the mechanical properties of the annealed specimens.

Evaluation of Indoor Thermal Environment According to Air-Barrier Air Conditioning System in Perimeter Zone (페리미터존의 에어배리어 공조방식에 따른 실내 열환경 평가)

  • Park Byung-Yoon;Ham Heung-Don;Sohn Jang-Yeul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.4
    • /
    • pp.370-376
    • /
    • 2005
  • For the purpose of investigating the effective removal of heating/cooling load from light-weighted building envelope, two air-conditioning systems, conventional parameter air-conditioning system and air-barrier system, are evaluated and compared by both experiment and simulation with six different cases during heating and cooling season. In addition, the characteristics of window-side building thermal load are assessed by varying supply air velocity in order to seek the optimal system operation condition. The results are as follows. 1) Air-barrier system is more effective to remove heating/cooling load at perimeter zone than conventional parameter air-conditioning system. Moreover, the better effectiveness appears during cooling season than during heating season. 2) The experiment during cooling season provides that indoor temperature of air-barrier system shows $1^{\circ}C$ less than that of the conventional system with similar outdoor air temperature profile, and indoor temperature distribution is more uniform throughout the experimented model space. It concludes that air-barrier system can achieve energy saving comparing to the conventional system. 3) The capturing efficiency of air-barrier system is 0.47 on heating season and 0.2 on cooling season with the same supply air volume. It results that the system performs effectively to remove building thermal load, moreover demonstrates high efficiency during cooling season. 4) The simulation results provide that capturing efficiency to evaluate the effective removal of building load from perimeter zone shows high value when supply air velocity is 1 m/s.

Improvement of Rate Capability and Low-temperature Performances of Graphite Negative Electrode by Surface Treatment with Copper Phthalocyanine (구리 프탈로시아닌으로 표면처리된 흑연 음극의 속도특성 및 저온성능 개선)

  • Jurng, Sunhyung;Park, Sangjin;Ryu, Ji Heon;Oh, Seung M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.3
    • /
    • pp.130-135
    • /
    • 2015
  • The rate capability and low-temperature characteristics of graphite electrode are investigated after surface treatment with copper phthalocyanine (CuPc) or phthalocyanine (Pc). Uniform coating layers comprising amorphous carbon or copper are generated after the treatment. The rate performance of graphite electrodes is enhanced by the surface treatment, which is more prominent with CuPc. The resistance of the graphite electrode estimated from electrochemical impedance spectroscopy and pulse resistance measurement is the smallest for the CuPc-treated graphite. It is likely that the amorphous carbon layer formed by the decomposition of Pc facilitates $Li^+$ diffusion and the metallic copper derived from CuPc improves the electrical conductivity of the graphite electrode.

Measurement of Humidity Distribution in a Proton Exchange Membrane Fuel Cell Using Channel Embedded Humidity Sensors (채널 내장형 습도 센서를 이용한 고분자 전해질 연료전지의 습도분포 측정)

  • Lee, Yongtaek;Yang, Gyung Yull
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.5
    • /
    • pp.397-403
    • /
    • 2015
  • In this study, water distribution inside a proton exchange membrane fuel cell (PEMFC) was measured experimentally. Water distribution is non-uniform because of vigorous chemical reaction and mass transport and has been difficult to measure experimentally. Therefore, much research relied on indirect measuring methods or numerical simulations. In this study, several mini temperature-humidity sensors were installed at the channel for measuring temperature and humidity of the flowing gas throughout the channel. Only one of two electrode channels was humidified externally, and the humidity distribution on the other side was measured, enabling the observation of water transport characteristics under various conditions. Diffusion through the membrane became more vigorous as the temperature of the humidifier rose, but at high current density, electro-osmotic drag became more effective than diffusion.

The Comparative Study on Performance of PTC and Flat-plate Solar Collector (PTC와 평판형 태양열집열기의 성능평가 비교 연구)

  • Kim, In-Hwan;Hur, Nam-Soo;Kim, Man-Seok;Lee, Jung-Eun
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.6
    • /
    • pp.28-33
    • /
    • 2010
  • Solar collectors to be applied are mainly flat-plate or vacuum tube collector which is used for hot water supply of house because of low heat value and low temperature. There are a necessity to expand applicable scope of solar collector into the industrial process heat source and air conditioner for coping with renewable energy policy of government and industrial trend. This study is to analysis the performance of PTC solar collector of concentrating type and flat-plate of non-concentrating. For this, temperature difference and heating value as insolation of air outside is measured from these two collectors mounted on 2-axial solar tracking system. It is investigated that temperature profile obtained from PTC solar collector is uniform and collecting heat per unit area is 6.8kcal/$m^2$ min which is about 3 times with compare to flat-plate collector of 2kcal/$m^2$min. Also the amount of heat to be produced from PTC solar collector is 3 Mcal/$m^2$ which is about 2 times with compare to flat-plate collector of 1.5Mcal/$m^2$ as a result of operating these two collectors during one month. Therefore, it is obtained that heat collecting performance of PTC solar collector is superior to flat-plate.

Tc and Jc distribution in in situ processed MgB2 bulk superconductors with/without C doping

  • Kim, C.J.;Kim, Y.J.;Lim, C.Y.;Jun, B.H.;Park, S.D.;Choo, K.N.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.2
    • /
    • pp.36-41
    • /
    • 2014
  • Temperature dependence of magnetic moment (m-T) and the magnetization (M-H) at 5 K and 20 K of the in situ processed $MgB_2$ bulk pellets with/without carbon (C) doping were examined. The superconducting critical temperature ($T_c$), the superconducting transition width (${\delta}T$) and the critical current density ($J_c$) were estimated for ten test samples taken from the $MgB_2$ bulk pellets. The reliable m-T characteristics associated with the uniform $MgB_2$ formation were obtained for both $MgB_2$ pellets. The $T_cs$ and ${\delta}Ts$ of all test samples of the undoped $MgB_2$ were the same each other as 37.5 K and 1.5 K, respectively. The $T_cs$ and ${\delta}Ts$ of the C-doped $MgB_2$ were 36.5 K and 2.5 K, respectively. Unlike the m-T characteristics, there existed the difference among the M-H curves of the test samples, which might be caused by the microstructure variation. In spite of the slight $T_c$ decrease, the C doping was effective in enhancing the $J_c$ at 5 K.

Electrocaloric Effect in Heterolayered K(Ta,Nb)O3/Pb(Zr,Ti)O3 Thin Films Fabricated by Spin-Coating Method (스핀-코팅법으로 제작한 K(Ta,Nb)O3/Pb(Zr,Ti)O3 이종층 박막의 전기 열량 효과)

  • Yang, Young-Min;Yuk, Ji-Soo;Kim, Ji-Won;Yi, Sam-Haeng;Park, Joo-Seok;Kim, Young-Gon;Lee, Sung-Gap
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.6
    • /
    • pp.465-470
    • /
    • 2020
  • Heterolayered K(Ta,Nb)O3/Pb(Zr,Ti)O3 thin films on Pt/Ti/SiO2/Si substrates were prepared by a sol-gel process and spin-coating method. The structural and electrical properties were measured to investigate the possibility of application as an electrocaloric effect device. All specimens exhibited dense and uniform cross-sectional structures without pores, and the average thickness of the specimen coated six times was approximately 394 nm. Curie temperatures were observed at 5℃ or less in type-I and 10℃ in type-II specimens, respectively. Type-II specimens coated 6 times showed a relative dielectric constant of 758 and remanent polarization of 9.71 μC/㎠ at room temperature. The maximum electrocaloric effect occurred between 20 and 25℃, slightly higher than their Curie temperature, and the electrocaloric property (ΔT) of the type-II specimens coated 6 times was approximately 1.2℃ at room temperature.