• Title/Summary/Keyword: Uniform Temperature

Search Result 1,837, Processing Time 0.029 seconds

Nonlinear static analysis of smart beams under transverse loads and thermal-electrical environments

  • Ali, Hayder A.K.;Al-Toki, Mouayed H.Z.;Fenjan, Raad M.;Faleh, Nadhim M.
    • Advances in Computational Design
    • /
    • v.7 no.2
    • /
    • pp.99-112
    • /
    • 2022
  • This research has been devoted to examine nonlinear static bending analysis of smart beams with nano dimension exposed to thermal environment. The beam elastic properties are corresponding to piezo-magnetic material of different compositions. The large deflection analysis of the beam has been performed assuming that the beam is exposed to transverse uniform pressure. Based on the rule of Hamilton, the governing equations have been derived for a nonlocal thin beam and solved using differential quadrature method. Temperature variation effect on nonlinear deflection of the smart beams has been studied. Also, the beam deflection is shown to be affected by electric voltage, magnetic intensity and material composition.

Improved Model for Maximum Power Point Tracking (MPPT) of Solar System (태양광 시스템의 최대 전력지점 추적(MPPT) 정확도 향상을 위한 모델링)

  • Lee, YoungHyun;Lee, Jonghwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.114-118
    • /
    • 2022
  • The photovoltaic system is affected by various conditions such as temperature and irradiance. Because non-uniform irradiation and partial shading conditions affect the entire string of cells connected in series, a bypass diode is used to bypass the current flow normally. In order to find the maximum power point in partial shade conditions, it is necessary to estimate various methods of maximum power point tracking. In this paper, the hybrid method of MPPT using Lambert W function and perturbation & observation algorithm is proposed under partial shading conditions. The simulation results are obtained using MATLAB/Simulink and shows the improvement of the accuracy of MPPT.

A Study on Condensation Heat Transfer to Some Evaporated Metal Surface (각종증착금속면의 응축열전달에 관한 연구)

  • Jho Shi Gie;Lee Ki Woo;Park Young Jae;Cko Myong Jae
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.15 no.2
    • /
    • pp.188-195
    • /
    • 1986
  • Condensation heat transfer can be classified in dropwise condensation and filmwise condensation, and for the industrial purpose, the former is more useful than the latter because of the higher heat transfer rate. But it is difficult to maintain the dropwise condensation continuously since most of the metal surfaces become wetted after exposure to a condensing vapor over an extended period of time. To maintain dropwise condensation continuously , various surface coatings and promoters have been used recently, but these methods must be reconsidered about the durability of condensing surface. Therefore, in this study, evaporating method of various pure metals on the condensing surface has been performed to maintain dropwise condensation. The results have showed that the heat transfer rate of silver evaporating surface is higher than any other metal evaporating in dropwise area. Transition temperature and filmwise condensation curves are uniform regardless of kinds of evaporating metals.

  • PDF

Analysis of the Combined Surface Radiation-Natural Convection in a Rectagular Enclosure with a Selectively Transparent Wall (선택적 투과성면을 가진 직사각형 밀폐공간에서의 표면복사 및 자연대류해석)

  • Park D. S.;Lee T. S.;Lee J. S.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.16 no.2
    • /
    • pp.194-203
    • /
    • 1987
  • A numerical study has been conducted on the combined radiation-natural convection heat transfer characteristics in a square cavity with a selectively transparent wall. The fluid in the cavity is assumed to be transparent to the thermal radiation. The effect of the wall emissivity is mainly considered in view of the temperature and flow fields. The comparison of the radiative heat flux and conductive heat flux variations along the isothermal wall is presented as well. The results show that the Nusselt number distribution is fairly uniform due to the com-pensative interaction of the radiation and convection heat transfer.

  • PDF

Thermal Protection Shield Concept for Diamond Impregnated Tools

  • Tillmann, W.;Gathen, M.;Kronholz, C.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.875-876
    • /
    • 2006
  • For dry machining of mineral materials the Institute of Materials Engineering pursues a novel thermal protection shield concept for diamond tools, in which thermal insulating materials in diamond composite structures act as heat shield, which protects diamonds in deeper layers against high temperature and graphitisation. Before the effectiveness of this concept could be investigated suitable composites have to be manufactured. In this paper the powder metallurgical production processes of diamond-alumina-cobalt-composites with varying alumina and cobalt particle sizes, their microstructures and porosities are described. It could be observed that the distribution of small-sized alumina particles ($<70{\mu}m$) in the cobalt matrix is uniform and the porosity of the composite decrease.

  • PDF

Non-linear thermal buckling of FG plates with porosity based on hyperbolic shear deformation theory

  • Hadji, Lazreg;Amoozgar, Mohammadreza;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.42 no.5
    • /
    • pp.711-722
    • /
    • 2022
  • In this paper, hyperbolic shear deformation plate theory is developed for thermal buckling of functionally graded plates with porosity by dividing transverse displacement into bending and shear parts. The present theory is variationally consistent, and accounts for a quadratic variation of the transverse shearstrains across the thickness and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. Three different patterns of porosity distributions (including even and uneven distribution patterns, and the logarithmic-uneven pattern) are considered. The logarithmic-uneven porosities for first time is mentioned. Equilibrium and stability equations are derived based on the present theory. The non-linear governing equations are solved for plates subjected to simply supported boundary conditions. The thermal loads are assumed to be uniform, linear and non-linear distribution through-the-thickness. A comprehensive parametric study is carried out to assess the effects of volume fraction index, porosity fraction index, aspect ratio and side-to-thickness ratio on the buckling temperature difference of imperfect FG plates.

Vibro-acoustics of functionally graded porous beams subjected to thermo-mechanical loads

  • Chinnapandi, Lenin Babu Mailan;Pitchaimani, Jeyaraj;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • v.44 no.6
    • /
    • pp.829-843
    • /
    • 2022
  • This manuscript work presents a comprehensive continuum model capable to investigate the effect of porosity on vibro-acoustic behaviour of functionally graded (FG) beams resting on an elastic foundation subjected to thermal and mechanical loadings. Effects of uniform temperature rise and edge compressive load on the sound radiation characteristics are studied in a comparative manner. The numerical analysis is carried out by combining finite element method with Rayleigh's integral. Detailed parametric studies are accomplished, and influences of power law index, porosity volume, porosity distribution and boundary conditions on the vibro-acoustic response characteristics are analyzed. It is found that the vibro-acoustic response under mechanical edge compression is entirely different compared to from that under the thermal load. Furthermore, nature of grading of porosity affects the sound radiation behaviour for both the loads. The proposed model can be used to obtain the suppression performance of vibration and noise FG porous beams under thermal and mechanical loads.

Study and analysis of porosity distribution effects on the buckling behavior of functionally graded plates subjected to diverse thermal loading

  • Abdelhak Zohra;Benferhat Rabia;Hassaine Daouadji Tahar
    • Coupled systems mechanics
    • /
    • v.13 no.2
    • /
    • pp.115-132
    • /
    • 2024
  • This paper introduces an improved shear deformation theory for analyzing the buckling behavior of functionally graded plates subjected to varying temperatures. The transverse shear strain functions employed satisfy the stress-free condition on the plate surfaces without requiring shear correction factors. The material properties and thermal expansion coefficient of the porous functionally graded plate are assumed temperature-dependent and exhibit continuous variation throughout the thickness, following a modified power-law distribution based on the volume fractions of the constituents. Moreover, the study considers the influence of porosity distribution on the buckling of the functionally graded plates. Thermal loads are assumed to have uniform, linear, and nonlinear distributions through the thickness. The obtained results, considering the effect of porosity distribution, are compared with alternative solutions available in the existing literature. Additionally, this study provides comprehensive discussions on the influence of various parameters, emphasizing the importance of accounting for the porosity distribution in the buckling analysis of functionally graded plates.

Prediction of stiffness degradation in composite laminate with transverse cracking and delamination under hygrothermal conditions-desorption case

  • B. Boukert;M. Khodjet-Kesba;A. Benkhedda;E.A. Adda Bedia
    • Advances in aircraft and spacecraft science
    • /
    • v.11 no.1
    • /
    • pp.1-21
    • /
    • 2024
  • The stiffness reduction of cross-ply composite laminates featuring a transverse cracking and delamination within the mid-layer is predicted through utilization of a modified shear-lag model, incorporating a stress perturbation function. Good agreement is obtained by comparing the prediction models and experimental data. The material characteristics of the composite are affected by fluctuations in temperature and transient moisture concentration distribution in desorption case, based on a micro-mechanical model of laminates. The transient and non-uniform moisture concentration distribution induces a stiffness reduction. The obtained results demonstrate the stiffness degradation dependence on factors such as cracks density, thickness ratio and environmental conditions. The present study underscores the significance of comprehending the degradation of material properties in the failure progression of laminates, particularly in instances of extensive delamination growth.

Petrological and Mineralogical Characteristics and Firing Temperature of Pottery in the 5-6th Century from Changnyeong, Gyeongsangnamdo (경상남도 창녕에서 출토된 5-6세기 토기의 암석광물학적 특성 연구 및 소성온도 추정)

  • Woo, Hyeon Dong;Kim, Ok Soon;Jang, Yun Deuk
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.63-72
    • /
    • 2014
  • This study is conducted to investigate mineralogical characteristics and estimate firing temperature and condition of earthenwares in the 5-6th Century which are found at ancient tombs in Gyo-dong, Gyo-ri, Changnyeong-eup, Changnyeong-gun, Gyeongsangnam-do, TKorea by applying petrological methods. For this study, mineralogical analysis, microtexture observation and chemical analysis were conducted. According to observations using a polarization microscope, the potshreds are mainly composed of quartz and feldspar and consist of some felsic volcanics, tempers, opaques and mullite, hematite and spinel were found under XRD and FTIR analysis. The flow pastes are observed in many potshreds, and it indicate that this textures made by the mixing process or the pottery made from the mixture of 2 sorts of clays at least. They dose not show the features of the potshreds firing under temperature of $1,200-1,300^{\circ}C$ rather than the earthenware firing under relatively low temperature of $1,000^{\circ}C$ approximately because of the existence of a number of pores and the crystals of the specific minerals. The growths mostly of mullite on the surface and into the cracks of the potshreds indicate that the firing condition was not uniform to make even temperature and oxidation. Most of the pottery shreds have felsic volcanic fragments and some of them have cristobalite which is formed at the temperature of more than 1,470^{\circ}C$. But considering the estimated firing temperature, these are not formed during firing but included in the original clay.