• Title/Summary/Keyword: Uniform Heating

Search Result 278, Processing Time 0.026 seconds

Numerical Thermo-Fluid Analysis to the Water Cooling Plate (IGBT 스택용 10kW급 수냉각판 열유동 수치해석)

  • Ryoo, Seong-Ryoul;Mock, Chin-Sung;Cho, Tae-Sik;Kim, Chul-Ju
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1298-1302
    • /
    • 2011
  • The present study deals with the results of a thermo-fluid analysis applied to the cooling plate of the water cooling system developed for IGBT stacks, which was designed to keep the power semi-conductors from over heating problems. The cooling plate is to absorb a maximum quantity of 10kW from 4 IGBTs which are to be placed on both sides of the cooling plate, 2 IGBTs of them on each surface. For the analysis, Adina of CFD Program was used and an analysis was conducted to obtain the knowledges on heat and mass flow at both the plate and fluid flow inside. For the simulation, the operational conditions of a temperature difference of $15^{\circ}C$ for the working fluid and a uniform heat flux of about 92000 $W/m^2$ on the surface in contact with an IGBTs.

  • PDF

A Study on Plastic Injection Molding of a Metallic Resin Pigment using a Rapid Heating and Cooling System (급속가열냉각장치에 의한 금속성 안료 사출성형)

  • Lee, Gyu-Sang;Jin, Dong-Hyun;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.2
    • /
    • pp.87-92
    • /
    • 2015
  • The injection molding process is widely used in the production of most plastic products. In order to make metal-colored plastic products like those found in modern luxury home alliances, metallic pigments are mixed with a basic resin material for injection molding. However, process control for metal-colored plastic products is extremely difficult due to the non-uniform melt flow of the metallic resin pigments. In this study, the effect of process parameters on the quality of a metal-colored plastic product is evaluated. A rapid mold cooling method using a compressed cryogenic fluid is also proposed to decrease the content of undesired compounds within the plastic product.

Constructing Overhauser Dynamic Nuclear Polarization-Nuclear Magnetic Resonance System Using Benchtop Electron Paramagnetic Resonance Spectrometer

  • Saun, Seung-Bo;Kim, JiWon;Han, Oc Hee
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.22 no.2
    • /
    • pp.34-39
    • /
    • 2018
  • The Nuclear Magnetic Resonance (NMR) technique using Dynamic Nuclear Polarization (DNP) procedures is one of the promising techniques that enable overcoming low sensitivity problems in NMR spectroscopy. We constructed an ODNP-NMR system using a commercial benchtop EPR spectrometer. The $^1H$ NMR peak area of water in aqueous solutions of 4-hydroxy-TEMPO was enhanced more than 95 times in the ODNP-NMR experiments. Our signal enhancement results were about 55% of the previously reported result. This could be due to non-uniform microwave power over a sample and unwanted sample heating by microwave. However, this portable ODNP-NMR spectrometer will be eventually useful for site-specific detection with nano-scale spatial resolutions and molecular dynamics studies with significantly improved signal sensitivity.

The Effects of Various Swirl Flows on Pulverized Petroleum Coke Combustion (미분 석유코크스연소기에서 스월강도변화가 연소과정에 미치는 영향)

  • Cha, Chun Loon;Lee, Ho Yeon;Hwang, Sang Soon
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.297-299
    • /
    • 2014
  • Petroleum coke has high heating value and low price. Due to the steadily increasing demand for heavy oil processing, the production volume of petroleum coke tends to be expanded. The high availability and low price of petroleum coke have been strongly considered as candidate fuel for power generation facilities. However the high carbon content, high sulfur content and nitrogen content of petroleum fuel are known to produce relatively large quantity of CO2, high NOx and SO2 emission. In this work, a series of numerical simulations have been carried out in order to investigate the effects of swirl flow intensity on combustion furnace, which is most important operating condition. Results show that the temperature distribution was spatially uniform at about 1600K but high temperature region are located quite differently depending on swirl number. In addition, numerical temperature data was compared with experimental temperature data and its temperature difference shows less than 10%. On the other hand, discrepancy between numerical and experimental emission data were slightly large with necessities of improved emission model.

  • PDF

A Study on the Evaluation of Air Change Efficiency of Multi-Air-Conditioner Coupled with Ventilation System

  • Kwon, Yong-Il;Han, Hwa-Taik
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.15 no.3
    • /
    • pp.101-107
    • /
    • 2007
  • Indoor air quality becomes of a concern recently in view of human health. This study investigates the air diffusion performance and the air change efficiency of a classroom, when outdoor air is introduced in two different ways in addition to the heating/cooling operation of a ceiling-mounted heat pump. A CFD analysis has been performed to investigate the effect of the discharge angle of the air jets from the heat pump for both parallel and series types of outdoor air system. It is observed that the series type creates more uniform indoor environment compared to the parallel type in general. It can be concluded the discharge angle should not be larger than 40o for the parallel type, in order not to generate thermal stratification in the room.

Amplitude Effect on the Resonance of Natural Convection inside a Square Cavity with a Vibrating Bottom Wall (사각 공동구의 하부 벽면 가진의 진폭 변화에 따른 자연 대류 유동의 공진 현상에 관한 연구)

  • Hur N.;Kim W.;Kim Y.;Kang B. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.66-71
    • /
    • 2000
  • In the present study a numerical simulation is performed on a natural convection inside a square cavity with a vibrating bottom wall. The heat transfer coeffcients for various amplitudes of the bottom wall vibration were compared to the case without the bottom wall excitation. From the results, it is seen that the local temperature distribution in a cavity becomes more uniform as the amplitude of the bottom wall vibration is increased. Also, it was seen that the heat transfer coefficient increased on the heating wall as the applied amplitude increased.

  • PDF

Thermal Stability Analysis of 2-D Spacecraft Appendage (위성체 2-D 구조물의 열 안정성 해석)

  • 윤일성;송오섭;김규선
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.99-104
    • /
    • 2001
  • Thermally induced vibration response of solar array is investigated. The solar array model consists of composite thin walled beam and solar blanket, spreader bar. The composite thin walled beam incorporates a number of nonclassical effects of transverse shear, primary and secondary warping, rotary inertia and anisotropy of constituent materials. The solar blanket is a membrane subjected to uniform tension in the z direction. The spreader bar is a rigid member. A coupled thermal structure analysis that includes the effects of structural deformations on heating and temperature gradient is investigated. A stability criterion given in parameters for establishes the conditions for thermal flutter.

  • PDF

Synthesis and Characterization of Copper Oxide nanowires by Facile Heating under Static Air Condition

  • Kwon, Tae-Ha;Choi, Hyek-Hwan;Chung, Wan-Young
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.1
    • /
    • pp.99-102
    • /
    • 2010
  • Large-scaled area and aligned copper oxide nanowires have been synthesized by a vapor-phase approach to the facial synthesis of copper oxide nanowires supported on the surface of a copper gasket. The effects of annealing temperature and time were investigated. Long and aligned nanowires can only formed within a narrow temperature range from 400 to $500^{\circ}C$ for 4 hrs. Annealing copper gasket in static air produces large-area, uniform, but not well vertically aligned nanowires along the copper gasket surface. The surface of copper gasket is converted into bicrystal CuO nanowires was observed after the copper gasket is annealed under static air condition.

Development of the Natural Gas Burner for Modified Chemical Deposition Processes (화학증착용 천연가스버너 개발)

  • You, Hyun-Seok;Lee, Joong-Seong;Han, Jeong-Ok;Choi, Dong-Soo
    • 한국연소학회:학술대회논문집
    • /
    • 2001.06a
    • /
    • pp.75-81
    • /
    • 2001
  • MCVD(modified chemical vapor deposition) used in making optical-fiber currently utilizes the hydrogen-oxygen burner as a energy supply source. To improve the productivity and to reduce the manufacturing cost of optical-fiber, a natural gas-oxygen burner has been developed. The manufacturing processes of optical-fiber consist of vapor deposition, collapse and drawing processes. Among these processes, the vapor deposition and the collapse processes are important in terms of improving the productivity and saving the production cost. The vapor deposition and collapse processes are performed by combustion heat and flame force supplied by a burner. So the flame force of the burner used in these processes is required to have an optimal and consistent value in order to allow uniform heating and collapse of quartz tube. In this regard, the momentum ratio of natural gas and oxygen has been optimally determined by modification of a burner and the inlet flow pass also has been modified.

  • PDF

CO Sensor Characteristics of ZnO powders by Sol-Gel methods (Sol-Gel법에 의한 ZnO 분말의 CO 센서 특성)

  • Park, Bo-Seok;Park, Jin-Seoung;Noh, Whyo-Sub
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.821-825
    • /
    • 2002
  • ZnO thick films by Sol-Gel processing were investigated electrics, optics and the sensing characteristics of CO gas. Using the znic acetate dihydrate and acetylaceton (AcAc) as a chelating agent, stable ZnO sol was synthesized. ZnO phase was crystallized through the heat-treatment at $70^{\circ}C$ for 4hrs and influenced the sensing characteristics of the electrics and CO gas by uniform particle distributions not related particle size. The samples on the alumina substrate by thick films were investigated the properties of electrics and the effect of sensing. The sensitivity was so excellent in the sample of the heat-treatment at $600^{\circ}C$ for 12hrs and good in the heat-treatment for 1hrs generally. Crystallization and volatilization of organic materials according to the change of heating treatment temperature of thick films were analyzed by TG-DTA, XRD and mirostructure of thick films were observed by SEM.

  • PDF