• 제목/요약/키워드: Uniform Heating

검색결과 278건 처리시간 0.027초

조립자규소 성형체의 효과적 질화가열법에 관한 연구(Densification of Silicon Nitride 3보) (Effective Nitridation of Compacts of Coarse Silicon Particles)

  • 박금철;최상욱
    • 한국세라믹학회지
    • /
    • 제21권1호
    • /
    • pp.33-40
    • /
    • 1984
  • To find out the optimum heating profile for the nitridation of compacts of graded silicon grains (max 53$mu extrm{m}$) two batches with the addition of MgO and $Mg(NO_3)_3$$cdot$$6H_2O$ to silicon particles were isostatically pressed into compacts. They were nitrided under some different nitriding schedules. The properties such as bulk densitis microstructures and formed phases were measured and observed. The following results were obtained ; 1) About 10% unreacted silicon remained in specimen which was nitrided at 1, 350$^{\circ}C$ for 240hrs. 2) One of the step-heating processes 1, 150$^{\circ}C$-1, 390$^{\circ}C$ for 65hrs are then $1, 390^{\circ}C$for 50hrs was the low temperature but with that at high temperature. 3) High pressure(10.5kgf/$cm^2$) of nitrogen at 1, 390$^{\circ}C$ accelerated the $\alpha$$ ightarrow$$\beta$ transformation of silicon nitride. 4) Magnesium nitrate was superior to magnesium oxide in the role of nitriding aid and the formation of uniform microstructures.

  • PDF

진동하는 유동장하에서 내부 순환 유동을 고려한 액적의 증발에 관한 수치적 연구 (A numerical study on the vaporization of a droplet considering internal circulating flow in the presence of an oscillating flow)

  • 하만영
    • 대한기계학회논문집B
    • /
    • 제20권5호
    • /
    • pp.1700-1716
    • /
    • 1996
  • The two-dimensional, unsteady, laminar conservation equations for mass, momentum, energy and species transport in the gas phase and mass, momentum and energy in the liquid phase are solved simultaneously in spherical coordinates in order to study heating and vaporization of a droplet entrained in the oscillating flow. The numerical solution gives the velocity and temperature distribution in both gas and liquid phase as a function of time. When the gas flow oscillates around an vaporizing droplet, the liquid flow circulates in the clockwise or counterclockwise direction and the temperature distribution in the liquid phase changes its shapes, depending on the gas fow direction. When the gas flow changes its direction of circulating liquid flow is opposite to the gas flow, forming two vortex circulating in the opposite direction. During the heating period, the difference in the maximum and minimum temperature is large, followed by the almost uniform temperature slightly below the boiling temperature. The mass and heat transfer from the droplet depend on the droplet temperature, droplet diameter and the magnitude of relative velocity, giving the droplet lifetime different from the d$^{2}$-law.

대구경 곡관 두께감소율 제어를 위한 온도점프 벤딩 공정의 최적화에 관한 연구 (Study on Optimization of Temperature Jump-Bending Process for Reducing Thickness Attenuation of Large-Diameter Steel Pipe)

  • 허철수;김래성;전정환;양용군;최효규;류성기
    • 한국기계가공학회지
    • /
    • 제14권4호
    • /
    • pp.21-27
    • /
    • 2015
  • Induction bending is a method that allows the bending of any material that conducts electricity. This technology applies a bending force to a material that has been locally heated by an eddy current induced by a fluctuating electromagnetic field. Induction bending uses an inductor to locally heat steel through induction. This results in a narrow heat band in the shape to be bent. In general, the reduction of thickness attenuation of a large-diameter steel pipe is not allowed to exceed 12.5%. In this paper, in order to meet the standard of thickness attenuation reduction, a non-uniform heating temperature jump-bending process was investigated. As a result, the developed bending technique meets the requirements of thickness attenuation reduction for large-diameter steel pipes.

Temperature Analysis for Optimizing the Configuration of the Linear Cell

  • Choi Jong-Wook;Kim Sung-Cho;Kim Jeong-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제20권7호
    • /
    • pp.1089-1097
    • /
    • 2006
  • The market demand of display devices is drastically increasing in the information technology age. The research on OLED (Organic Light Emitting Diodes) display with the luminescence in itself is being more paid attention than LCD (Liquid Crystal display) with the light source from the back. The vapor deposition process is most essential in manufacturing OLED display. The temperature distribution of the linear cell in this process is closely related to securing the uniformity of organic materials on the substrate. This work analyzed the temperature distribution depending on the intervals between the crucible and the heating band as well as on the amount of the heat flux from the heating band. Moreover, the roles of the water jacket and the configuration of the cover within the linear cell were examined through the temperature analysis for six configurations of the linear cell. Under the above temperature analysis, the variations in the intervals and the amount of the heat flux were considered to have an effect on building the uniform temperature distribution within the crucible. It is predicted that the water jacket and the adequate configuration of the cover will prevent the blowout and clogging phenomena, respectively. The results can be used as the fundamental data for designing the optimal linear cell.

마곡지구 하수열에너지이용 타당성 검토 (Feasibility study on district heating Magok area by sewage water heat source)

  • 이영수
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.357-362
    • /
    • 2009
  • As a unutilized energy, treated sewage water locates widespread near urban areas. From the previous survey, the sewage water is reported to hold energy potential up to 36,000 Tcal/year, which was 2.1% of the total domestic energy consumption and 9.7% of the energy usage in the household and business sector in 2006. Temperature of the sewage water differs locally, but its range is observed in a range of $20{\sim}25^{\circ}C$ in summer and $8{\sim}13^{\circ}C$ in winter. Since the temperature range of the sewage water has a better seasonal distribution about $5{\sim}10^{\circ}C$ compared to ambient air, it is a promising heat sink for summer or heat source for winter. The sewage water is also a high quality heat source from its abundant quantity and uniform temperature. Considering the ambient temperature of Korea is very low in winter, a heat pump system using the sewage water can be an alternative to prevent problems of capacity deficiency and frost formation.

  • PDF

PDP용 배기로내 열전달 현상에 관한 해석 (The Analysis of the Heat Transfer Characteristic in a PDP Ventilation Chamber)

  • 박형규;정재동;김찬중;이준식;박희재;조영만;조해균;박득일
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.385-391
    • /
    • 2000
  • An analysis of the heat transfer in a PDP ventilation chamber has been conducted to investigate the required heat curve and temperature uniformity of the panels. Firstly, experiment in a test chamber has been carried out and compared with the unsteady 3D numerical simulation. Reasonable agreement was found, which suggested that the employed numerical model had its credibility in an actual PDP ventilation process. On this ground, tact-type heating/cooling system was analyzed. The panel temperature was more uniform in the $40^{\circ}C$ tact-type system than in the $80^{\circ}C$ one. Comparison of full simulation of a cart and simplified simulation of one panel shows the panel pitch, which is closely related to a production rate, can be also predicted.

  • PDF

Local transport properties of coated conductors by laser-scan imaging methods

  • Kim, Gracia;Jo, William;Nam, Dahyun;Cheong, Hyeonsik;Moon, Seoung Hyun
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제18권2호
    • /
    • pp.1-4
    • /
    • 2016
  • To observe the superconducting current and structural properties of high critical temperature ($T_c$) superconductors (HTS), we suggest the following imaging methods: Room temperature imaging (RTI) through thermal heating, low-temperature bolometric microscopy (LTBM) and Raman scattering imaging. RTI and LTBM images visualize thermal-electric voltages as different thermal gradients at room temperature (RT) and superconducting current dissipation at near-$T_c$, respectively. Using RTI, we can obtain structural information about the surface uniformity and positions of impurities. LTBM images show the flux flow in two dimensions as a function of the local critical currents. Raman imaging is transformed from Raman survey spectra in particular areas, and the Raman vibration modes can be combined. Raman imaging can quantify the vibration modes of the areas. Therefore, we demonstrate the spatial transport properties of superconducting materials by combining the results. In addition, this enables visualization of the effect of current flow on the distribution of impurities in a uniform superconducting crystalline material. These imaging methods facilitate direct examination of the local properties of superconducting materials and wires.

비전도 반평판 사이에서 미끄럼 운동하는 평판 층의 열탄성 불안정성 (Thermoelastic Instability of the Layer Sliding between Two Non-conducting Half-planes)

  • 하태원;조용구;김흥섭;이정윤;오재응
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.483-488
    • /
    • 2003
  • Frictional heating in brakes causes thermoelastic distortion of the contacting bodies and hence affects the contact pressure distribution. The resulting thermo-mechanical coupling can cause thermoelastic instability (TEI) if the sliding speed is sufficiently high, leading to non-uniform heating called hot spots and low frequency vibration known as hot judder. The vibration of brakes to the known phenomenon of frictionally-excited thermoelastic instability is estimated studying the interface temperature and pressure evolution with time. A simple model has been considered where a layer with half-thickness ${\alpha}$ slides with speed V between two half-planes which are rigid and non-conducting. The advantage of this properly simple model permits us to deduce analytically the critical conditions for the onset of instability, which is the relation between the critical speed and the growth rate of the interface temperature and pressure. Symmetrical component of pressure and temperature distribution at the layer interfaces can be more unstable than antisymmetrical component. As the thickness ${\alpha}$ reduces, the system becomes more apt to thermoelastic instability. Moreover, the evolution of the system beyond the critical conditions has shown that even if low frequency perturbations are associated with low critical speed, it might be less critical than high frequency perturbations if the working sliding speed is much larger than the actual critical speed of the system.

  • PDF

모세관을 이용한 멀티형 열펌프의 신뢰성에 관한 실험적 연구 (An Experimental Stuff on the Performance of Multi-type Heat Pump using Capillary Tubes)

  • 권영철;장근선;이윤수;김대훈;전용호;이상재
    • 설비공학논문집
    • /
    • 제14권9호
    • /
    • pp.749-755
    • /
    • 2002
  • In order to develop a multi-type heat pump system with two indoor units of non-uniform capacities, the optimum refrigerant circuit was developed using capillary tubes. The refrigerant circuit was composed of four main parts, a heating circuit, a cooling circuit, a by-pass circuit and a balance circuit. The system characteristics of multi-type heat pump was investigated through the rating test and the reliability test, using the multi-type psy-chrometric calorimeter. The results of the rating test showed that the capacity of the multi-type heat pump was about 93% of the design value. In particular, the capacity of cooling single mode was about 13% higher than the design value, and the capacity of heating multi mode was about 5% higher than the design value. The reliability of the multi-type heat pump was verified by various reliability tests (overload, extension tube, freeze up, under/over charging, sweat, flood back). The optimal amount of refrigerant charge and compressor capacity were determined from the present work.

온도 구배열자극측정법의한 XLPE하전입자의 극성판정 (Polarity of Charged Particles n XLPE Measured by Temperature Gradient Thermally Stimulated Surface Potential)

  • 국상훈
    • 대한전기학회논문지
    • /
    • 제34권4호
    • /
    • pp.144-152
    • /
    • 1985
  • This paper temperature gradient thermally stimulated surface potentian (TG-TSSP) in measurements are applied to the study of the polarity of trapped and ionic carriers in cross-linked polyethylene (XLPE) filsm. In the thermally stimulated current in uniform temperature (TSC) of XLPE five peaks appear as indicated of the A B C D and E. In this paper A (at about -120$^{\circ}C$) D (at about 70$^{\circ}C$) and E (at about 110$^{\circ}C$) peaks are investigated. A peak is due to the biassing voltage and biassing temperature. Appear in to the glass transition temperature territory and caused in to the polarization of dipole. D peak is due to the depolarization of ionic space charge and E peak due to the detrapping of carriers injected from the electrodes. TG-TSSP and TSSP are measured to study the polarity of ionic carrier (D peak). In the unsatureated region of ionic space charge polarization, TG-TSSP is lower than TSSP during the initial stage of heating. Result of the experiment for E peak, TG-TSSP is higher than TSSP during the initial stage of heating and these results do not depend on the polarity of biassing voltage, and E peak is concerned with positive carriers (Holes).

  • PDF