• Title/Summary/Keyword: Uniform Heating

Search Result 278, Processing Time 0.035 seconds

Comparison of Heating Characteristics of Electric Heating Element Heater and Oil Hot Air Heater in Single Span Greenhouses (전기발열체 난방기 및 유류온풍 난방기의 단동온실 난방 특성 비교)

  • Kwon, Jin Kyung;Kim, Seung Hee;Shin, Young An;Lee, Jae Han;Park, Kyeong Sub;Kang, Youn Koo
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.324-332
    • /
    • 2017
  • The comparative experiments were conducted for single span greenhouses where cucumbers were cultivated to analyze the effect of heating between a carbon fiber electric heating element heater and an oil hot air heater in terms of the inside climate, energy consumption and plant growth. In order to analyze the effect of heating capacity, 6, 9, and 16 kW of electric powers were supplied to the electric heating element for same setting temperature of 15?. As a result, as the heating capacity increased, the number of ON-OFF cycles of the electric heating element and the temperature inside the greenhouse increased proportionally. In the comparison of two heaters, it was shown that the temperature and relative humidity distributions of the electric heating element installed greenhouse was much uniform than those of the oil hot air heater installed greenhouse. The heating energy consumptions during the heating period of 79 days were 867L for the oil hot air heater and 8,959 kWh for the electric heating element heater, and the heating costs were 607 and 403 thousand won respectively. In the electric heating element installed greenhouse, the cucumber growth was slightly better and the yield was 4.3% higher than those of the oil hot air heater installed greenhouse, but there were no statically significant difference in the cucumber growth and yield between greenhouses.

Numerical Analysis of New Proposals to Enhance Heat Transfer in MCFC'S Preconverter (열전달 향상을 위한 새로운 MCFC 연료전지용 프리컨버터의 수치해석)

  • Sohn, Chang Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.8
    • /
    • pp.753-758
    • /
    • 2013
  • In this study, two proposals for the wall heating preconverter of an MCFC are numerically studied to resolve hot temperature generation near the wall by the low thermal conductivity of the catalyst. The numerical results show that the inserted porous cupper plates on the catalyst evidently improve heat transfer and realize more uniform reforming in the preconverter. The calculated results for the preconverter with a circumference empty space of catalyst located at center, 1/2 and 4/5 from center line are compared. The circumference empty space located at 1/2 position shows better results than other cases, but the positive effect on the uniform reforming process is less than in the case of inserted cupper porous plates on the catalyst.

An Investigation of Heat Transfer Characteristics of Swirling Flow in a 180$^{\circ}$ Circular Section Bend with Uniform Heat Flux

  • Chang, Tae-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1520-1532
    • /
    • 2003
  • An experiment was performed to obtain the local heat transfer coefficient and Nusselt number in a circular duct with a 180$^{\circ}$ bend for Re=6 x 10$^4$, 8 x 10$^4$ and 1 x 10$\^$5/ under swirling flow and non-swirling flow conditions. The test tube with a circular section was made from stainless steel having a curvature ration of 9.4. Current heat flux of 5.11 kW/㎡ was applied to the test tube by electrical power and the swirling motion of air was produced by a tangential inlet to the pipe axis at 180$^{\circ}$. Measurements of local wall temperatures and the bulk mean temperatures of air were made at four circumferential positions at 16 stations. The wall temperatures showed a reduced distribution curve at the bend for the non-swirling flow, but this effect did not appear for the swirling flow. The Nusselt number distributions for the swirling flow, which was calculated from the measured wall and the bulk temperatures, were higher than that of the non-swirling flow. The average Nusselt number of the swirling flow increased by about 90-100%, compared to that of the non-swirling flow. The Nu/Nu$\_$DB/ values at the 90$^{\circ}$ station for non-swirling flow and swirling flow were approximately 2.5 and 4.8 at Re=6x10$^4$ respectively. The values agree well with Said's results for non-swirling flow.

Thermal Analysis of Silicon Carbide Coating on a Nickel based Superalloy Substrate and Thickness Measurement of Top Layers by Lock-in Infrared Thermography

  • Ranjit, Shrestha;Kim, Wontae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.37 no.2
    • /
    • pp.75-83
    • /
    • 2017
  • In this paper, we investigate the capacity of the lock-in infrared thermography technique for the evaluation of non-uniform top layers of a silicon carbide coating with a nickel based superalloy sample. The method utilized a multilayer heat transfer model to analyze the surface temperature response. The modelling of the sample was done in ANSYS. The sample consists of three layers, namely, the metal substrate, bond coat and top coat. A sinusoidal heating at different excitation frequencies was imposed upon the top layer of the sample according to the experimental procedures. The thermal response of the excited surface was recorded, and the phase angle image was computed by Fourier transform using the image processing software, MATLAB and Thermofit Pro. The correlation between the coating thickness and phase angle was established for each excitation frequency. The most appropriate excitation frequency was found to be 0.05 Hz. The method demonstrated potential in the evaluation of coating thickness and it was successfully applied to measure the non-uniform top layers ranging from 0.05 mm to 1 mm with an accuracy of 0.000002 mm to 0.045 mm.

Quench Characteristics of YBCO Film for Current Limiting Using Magnetic Field

  • 박권배;최효상;김혜림;현옥배;황시돌
    • Progress in Superconductivity
    • /
    • v.3 no.2
    • /
    • pp.252-256
    • /
    • 2002
  • We studied YBCO films for current limiting of the resistive type which utilizes a transition from superconducting to normal state caused by exceeding critical current. The films were deposited on sapphire substrates and covered by gold top layer. The current limiting element consists of 2 mm wide YBCO stripes connected in series. A serious problem in using YBCO films for current limiting is inhomogeneities caused by imperfect manufacturing. Therefore simultaneous quench is a difficult problem when elements for current limiting are connected in series. So some researchers have recently proposed using magnetic field and heating for simultaneous quench. We have measured extended exec trim field-current density(E-J) characteristics for current limiting elements of YBCO films in applied magnetic field of 0 - 130 mT. And we have investigated quench characteristics in current limiting elements and between elements of YBCO films in applied magnetic field. The result of the experiments show that the presence of applied magnetic fields induces uniform quench distribution fur the stripes in element at $50V_{rms}$, otherwise non-uniform quenches were observed. And simultaneous quenches between elements were investigated at $150V_{rms}$. We suggest that suppressing the critical current by increased fields due to fault current effectively forced the stripes of higher $J_{c}$(0) to quench, resulting in equalizing quench times.s.s.s.

  • PDF

Turbulence Driven by Supernova Explosions in a Radiatively-Cooling Magnetized Interstellar Medium

  • KIM JONGSOO;BALSARA DINSHAW;MAC LOW MORDECAI-MARK
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.333-335
    • /
    • 2001
  • We study the properties of supernova (SN) driven interstellar turbulence with a numerical magnetohydrodynamic (MHD) model. Calculations were done using the RIEMANN framework for MHD, which is highly suited for astrophysical flows because it tracks shocks using a Riemann solver and ensures pressure positivity and a divergence-free magnetic field. We start our simulations with a uniform density threaded by a uniform magnetic field. A simplified radiative cooling curve and a constant heating rate are also included. In this radiatively-cooling magnetized medium, we explode SNe one at a time at randomly chosen positions with SN explosion rates equal to and 12 times higher than the Galactic value. The evolution of the system is basically determined by the input energy of SN explosions and the output energy of radiative cooling. We follow the simulations to the point where the total energy of the system, as well as thermal, kinetic, and magnetic energy individually, has reached a quasi-stationary value. From the numerical experiments, we find that: i) both thermal and dynamical processes are important in determining the phases of the interstellar medium, and ii) the power index n of the $B-p^n$ relation is consistent with observed values.

  • PDF

Performance of OLED Fabricated on the ITO Deposited by Facing Target Sputtering (대향식 스퍼터링법으로 증착된 ITO 양극 위에 제작된 OLED 성능)

  • Yoon, Chul;Kim, Sang-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.5
    • /
    • pp.199-204
    • /
    • 2008
  • Indium tin oxide (ITO) has been commonly used as an anode for organic light emitting diode (OLED), because of its relatively high work function, high transmittance, and low resistance. The ITO was mostly deposited by capacitive type DC or RF sputtering. In this study we introduced a new facing target sputtering method. On applying this new sputtering method, the effect of fundamental deposition parameters such as substrate heating and post etching were investigated in relation to the resultant I-V-L characteristics of OLED. Three kinds of ITOs deposited at room temperature, at $400^{\circ}C$ and at $400^{\circ}C$ with after surface modification by $O_2$ plasma etching were compared. The OLED on ITO deposited with substrate heating and followed by etching showed better I-V-L characteristics, which starts to emit light at 4 volts and has luminescence of $65\;cd/m^2$ at 9 volts. The better I-V-L characteristics were ascribed to the relevant surface roughness with uniform micro-extrusions and to the equi-axed micromorphology of ITO surface.

The Study on Efficiency Improvement of Thermal Storage Tank for Solar Combined Heating System (태양열 난방 일체형 복합시스템의 축열조 효율개선에 관한 연구)

  • Lyu, Nam-Jin;Ko, Kwang-Soo;Han, Yu-Ri;Park, Youn-Cheol
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.188-192
    • /
    • 2006
  • This study is conducted to improve efficiency of thermal storage tank. The thermal storage tank was designed to store heat energy that obtained from solar or the others heat sources. However, it has difficulties in storing heat with uniform temperature through the entire tank with respect to vertical direction. This kind of maldistribution of the supplied heat to the storage tank effects on the system performance. In this study is focused on utilization of the thermal stratification to improve thermal comfort for people in the house. To enhance temperature stratification of the tank, a distributor was designed and Installed in the middle of the tank. The distributor is supplies hottest water to the top side of the tank which is very close to inlet of the supply line to the heating load. The hottest water that is accumulated on top side of the tank is firstly supplied to the load with higher temperature. Reminder water takes a little time to warming up until desired supply temperature reached. This kind alternating selection of the supply temperature is improve thermal comfort with moderated system performance.

  • PDF

Study on the Vinyl House Heating by Warm Air (농업용 비닐하우스의 온풍난방에 관한 기초적 연구)

  • 조진구;이근후
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.19 no.3
    • /
    • pp.4483-4491
    • /
    • 1977
  • The results obtained are as follows; 1. The variation of the temperature in a vinyl house without heating system is similar to that of air temperature in a day. The difference of maximum temperature and minimum one in a day is 27$^{\circ}C$ which is two times greater than the daily difference of air temperature. 2. When the length of the duct is increased, the high temperature zone is built up in the direction of warm air discharge from the duct, and the low temperature zone is built up in the opposite direction of warm air discharge. But, in case of the duct length is short (0.05 L), the temperature distrubution in a vinyl house become uniform. It is concluded that the shorter length of the duct, the better the distribution of the temperature in a vinyl house is. 3. When the duct is installed at high position, the high temperature zone is built up in the upper zone of the vinyl house and the low temperature zone is built up in the lower zone. And when the position of the duct is low, the rate of temperature variation along the vertical direction become high, and the direct contact of warm air with the plant in the house is occured. It is concluded that the duct should be installed at the position of slightly higher than the plant height. 4. When the fuel consumption rate is fixed at the 101/hr, the lowest temperature warming rate in the vinyl house is 5$^{\circ}C$ without regard to the air temperature.

  • PDF

A Study on the Evaluation of Air Change Efficiency of Multi-Air-Conditioner with Ventilation System for Heating Season (환기시스템이 적용된 히트펌프의 난방시 급기효율 평가에 관한 연구)

  • Kwon Yong-Il;Han Hwataik;Kim Kyung-Hwan;Chung Baik-Young;Lee Gam-Gue
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.1
    • /
    • pp.56-61
    • /
    • 2005
  • Indoor air quality becomes of a concern recently in view of human health. This study investigates the air diffusion performance and the air change efficiency of a classroom, when outdoor air is introduced in addition to the heating/cooling operation of a ceiling-mounted heat pump. A CFD analysis has been performed to investigate the effect of the discharge angle of the air jets from the heat pump for both parallel and series types of outdoor air system. It is observed that the series type creates more uniform indoor environment compared to the parallel type in general. It can be concluded the discharge angle should not be larger than 40o for the parallel type, in order not to generate thermal stratification in the room.