• Title/Summary/Keyword: Unidirectional composite

Search Result 236, Processing Time 0.027 seconds

Rate-Dependence of Off-Axis Tensile Behavior of Cross-Ply CFRP Laminates at Elevated Temperature and Its Simulation

  • Takeuchi, Fumi;Kawai, Masamichi;Zhang, Jian-Qi;Matsuda, Tetsuya
    • Advanced Composite Materials
    • /
    • v.17 no.1
    • /
    • pp.57-73
    • /
    • 2008
  • The present paper focuses on experimental verification of the ply-by-ply basis inelastic analysis of multidirectional laminates. First of all, rate dependence of the tensile behavior of balanced symmetric cross-ply T800H/epoxy laminates with a $[0/90]_{3S}$ lay-up under off-axis loading conditions at $100^{\circ}C$ is examined. Uniaxial tension tests are performed on plain coupon specimens with various fiber orientations $[{\theta}/(90-{\theta})]_{3S}$ ($\theta$ = 0, 5, 15, 45 and $90^{\circ}C$) at two different strain rates (1.0 and 0.01%/min). The off-axis stress.strain curves exhibit marked nonlinearity for all the off-axis fiber orientations except for the on-axis fiber orientations $\theta$ = 0 and $90^{\circ}$, regardless of the strain rates. Strain rate has significant influences not only on the off-axis flow stress in the regime of nonlinear response but also on the apparent off-axis elastic modulus in the regime of initial linear response. A macromechanical constitutive model based on a ply viscoplasticity model and the classical laminated plate theory is applied to predictions of the rate-dependent off-axis nonlinear behavior of the cross-ply CFRP laminate. The material constants involved by the ply viscoplasticity model are identified on the basis of the experimental results on the unidirectional laminate of the same carbon/epoxy system. It is demonstrated that good agreements between the predicted and observed results are obtained by taking account of the fiber rotation induced by deformation as well as the rate dependence of the initial Young's moduli.

Fabrication of Porous Mo-Cu by Freeze Drying and Hydrogen Reduction of Metal Oxide Powders (금속산화물 분말의 동결건조 및 수소환원에 의한 Mo-Cu 다공체 제조)

  • Kang, Hyunji;Han, Ju-Yeon;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.26 no.1
    • /
    • pp.1-5
    • /
    • 2019
  • In this study, porous Mo-5 wt% Cu with unidirectionally aligned pores is prepared by freeze drying of camphene slurry with $MoO_3-CuO$ powders. Unidirectional freezing of camphene slurry with dispersion stability is conducted at $-25^{\circ}C$, and pores in the frozen specimens are generated by sublimation of the camphene crystals. The green bodies are hydrogen-reduced at $750^{\circ}C$ and sintered at $1000^{\circ}C$ for 1 h. X-ray diffraction analysis reveals that $MoO_3-CuO$ composite powders are completely converted to a Mo-and-Cu phase without any reaction phases by hydrogen reduction. The sintered bodies with the Mo-Cu phase show large and aligned parallel pores to the camphene growth direction as well as small pores in the internal walls of large pores. The pore size and porosity decrease with increasing composite powder content from 5 to 10 vol%. The change of pore characteristics is explained by the degree of powder rearrangement in slurry and the accumulation behavior of powders in the interdendritic spaces of solidified camphene.

Effect of Cold Temperature Dry and Elevated Temperature Wet on Mechanical Properties of CFRP Composites (냉각($-55^{\circ}C$) 및 고온다습 조건($82.2^{\circ}C$)이 탄소섬유강화 복합재의 기계적 특성에 미치는 영향 연구)

  • Kim, Hyo-Jin;Lee, Sih-Joong;Han, Sang-Ho;Kim, Sang-Kuk;Park, Seong-Jun
    • Composites Research
    • /
    • v.22 no.3
    • /
    • pp.60-65
    • /
    • 2009
  • The mechanical behavior of carbon fiber reinforced polymeric (CFRP) composites was investigated. Both strength and modulus were measured at room temperature dry, cold temperature dry, $-55^{\circ}C$, and elevated temperature wet, $82.2^{\circ}C$ on seven different laminate configurations consisting of $[0_6]_T$, $[90_{12}]_T$, $[0_{16}]_T$ and $[90_{16}]_T$ unidirectional laminates, $[{\pm}45]_{5S}$ angle-ply laminate, $[0/90_{12}/0]_T$ cross-ply laminate, a 36-ply laminate $[0/45/-45/45/-45/0]_{3S}$. Based on the experimental data presented, it is shown that the strength at cold temperature dry, $-55^{\circ}C$ is increased with the brittleness of fiber or matrix. Moreover, it is shown that both shear strength and modulus at elevated temperature wet, $82.2^{\circ}C$ are decreased by the cause of interfacial deterioration between fiber and matrix with moisture absorption.

A FEASIBILITY STUDY ON THE APPLICATION OF THE KNITTED GLASS FABRIC COMPOSITES TO FIXED PROSTHODONTIC RESTORATION IN DENTISTRY (Knitted Glass Fabric 강화 복합레진을 사용한 고정성 치과보철물에 대한 적용성 평가)

  • Chung Jae-Min;Lee Kyu-Bok;Jo Kwang-Hun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.5
    • /
    • pp.429-440
    • /
    • 2002
  • Current dental restorations present a relatively weak resistance to fracture. Owing to their unique mechanical properties, fibre-reinforced polymers are now being considered. Unidirectional or woven continuous fibres, made of glass, polyethylene, carbon or Kevlar, have been evaluated. This study focused on the use of glass fibre knitted fabrics to reinforce acrylate resins, in order to investigate the possibility to construct single crowns as well as three unit bridges. Some points affecting the final composite system were tested ; 1) static strength, with focus on the stress transfer under a occlusal contact point ; 2) modelling of a three nit bridge ; 3) fatigue strength as a posterior three unit bridge material. The study demonstrated that knitted fabric reinforcements are showing an interesting compromise between stiffness, static strength for single crown. For three unit bridge applications in the posterior arch, however knitted glass fabric reinforcements were not strong enough in fatigue An additional reinforcement in the posterior arch fixed partial denture design was recommended.

Modal Analysis and Failure Safety Estimation for the Satellite Antenna System Composed of Sandwich Structure with Laminated Face Sheet (적층된 외피를 갖는 샌드위치로 구성된 위성체 안테나 시스템의 모드 해석과 파손안전성 판별)

  • Oh, Se-Hee;Han, Jae-Heung;Oh, Il-Kwon;Shin, Won-Ho;Kim, Chun-Gon;Lee, In;Park, Jong-Heung
    • Composites Research
    • /
    • v.14 no.4
    • /
    • pp.8-14
    • /
    • 2001
  • The satellite system experiences severe mechanical loads during the launch period. Therefore, the positive margin of safety of the satellite system must be demonstrated for every possible mechanical loading conditions during the launch period. This paper presents modal and stress analysis results due to quasi-static loads for the satellite antenna system. The failure tendency fur the sandwich construction of the satellite antenna system has been studied with various lamination angles of unidirectional prepreg.

  • PDF

Residual Stress on Concentric Laminated Fibrous Al2O3-ZrO2 Composites on Prolonged High Temperature Exposure

  • Sarkar, Swapan Kumar;Lee, Byong Taek
    • Korean Journal of Materials Research
    • /
    • v.23 no.9
    • /
    • pp.531-536
    • /
    • 2013
  • This paper investigates the effect of prolonged high temperature exposure on concentric laminated $Al_2O_3-ZrO_2$ composites. An ultrafine scale microstructure with a cellular 7 layer concentric lamination with unidirectional alignment was fabricated by a multi-pass extrusion method. Each laminate in the microstructure was $2-3{\mu}m$ thick. An alternate lamina was composed of 75%$Al_2O_3$-(25%m-$ZrO_2$) and t-$ZrO_2$ ceramics. The composite was sintered at $1500^{\circ}C$ and subjected to $1450^{\circ}C$ temperature for 24 hours to 72 hours. We investigated the effect of long time high temperature exposure on the generation of residual stress and grain growth and their effect on the overall stability of the composites. The residual stress development and its subsequent effect on the microstructure with the edge cracking behavior mechanism were investigated. The residual stress in the concentric laminated microstructure causes extensive micro cracks in the t-$ZrO_2$ layer, despite the very thin laminate thickness. The material properties like Vickers hardness and fracture toughness were measured and evaluated along with the microstructure of the composites with prolonged high temperature exposure.

Free vibration analysis of thick CGFR annular sector plates resting on elastic foundations

  • Tahouneh, Vahid
    • Structural Engineering and Mechanics
    • /
    • v.50 no.6
    • /
    • pp.773-796
    • /
    • 2014
  • This paper deals with free vibration analysis of continuous grading fiber reinforced (CGFR) and bi-directional FG annular sector plates on two-parameter elastic foundations under various boundary conditions, based on the three-dimensional theory of elasticity. The plates with simply supported radial edges and arbitrary boundary conditions on their circular edges are considered. A semi-analytical approach composed of differential quadrature method (DQM) and series solution is adopted to solve the equations of motion. Some new results for the natural frequencies of the plate are prepared, which include the effects of elastic coefficients of foundation, boundary conditions, material and geometrical parameters. Results indicate that the non-dimensional natural frequency parameter of a functionally graded fiber volume fraction is larger than that of a discrete laminated and close to that of a 2-layer. It results that the CGFR plate attains natural frequency higher than those of traditional discretely laminated composite ones and this can be a benefit when higher stiffness of the plate is the goal and that is due to the reduction in spatial mismatch of material properties. Moreover, it is shown that a graded ceramic volume fraction in two directions has a higher capability to reduce the natural frequency than conventional one-dimensional functionally graded material. The multidirectional graded material can likely be designed according to the actual requirement and it is a potential alternative to the unidirectional functionally graded material. The new results can be used as benchmark solutions for future researches.

Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure

  • Ramteke, Prashik Malhari;Panda, Subrata K.;Sharma, Nitin
    • Steel and Composite Structures
    • /
    • v.33 no.6
    • /
    • pp.865-875
    • /
    • 2019
  • The current article proposed to develop a geometrical model for the analysis and modelling of the uniaxial functionally graded structure using the higher-order displacement kinematics with and without the presence of porosity including the distribution. Additionally, the formulation is capable of modelling three different kinds of grading patterns i.e., Power-law, sigmoid and exponential distribution of the individual constituents through the thickness direction. Also, the model includes the distribution of porosity (even and uneven kind) through the panel thickness. The structural governing equation of the porous graded structure is obtained (Hamilton's principle) and solved mathematically by means of the isoparametric finite element technique. Initially, the linear frequency parameters are obtained for different geometrical configuration via own computer code. The comparison and the corresponding convergence studies are performed for the unidirectional FG structure for the validation purpose. Finally, the impact of different influencing parameters like aspect ratio (O), thickness ratio (S), curvature ratio (R/h), porosity index (λ), type of porosity (even or uneven), power-law exponent (n), boundary condition on the free vibration characteristics are obtained for the FG panel and discussed in details.

Size effect on tensile strength of filament wound CFRP composites (필라멘트 와인딩 탄소섬유 복합재의 인장강도 크기 효과)

  • Hwang, T.K.;Doh, Y.D.;Kim, H.G.
    • Composites Research
    • /
    • v.24 no.5
    • /
    • pp.1-8
    • /
    • 2011
  • This paper presents the results of theoretical analysis and experimental test to show the size effect on the fiber strength of filament would pressure vessel. First, a series of fully scaled hoop ring tests with filament would carbon-epoxy were conducted, which exhibited a remarkable size effect on the fiber strength. Next, the failure analyses using WWLM(Weibull Weakest Link Model) and the SMFM(Sequential Multi-step Failure Model) were performed and compared to the hoop ring test data, as well as to unidirectional specimens test data from the literature. It was found that the analysis results significantly underestimated the fiber strengths compared to the test data. In this study, a modified SMFM was proposed through the modification of the length size effect. The fiber strengths from modified SMFM analysis showed good agreement with the test data.

Material Analysis and Shape Optimization of a Deployable Lightweight Satellite Antenna Reflector (전개형 경량 위성 안테나 반사판의 재료분석 및 형상 최적화)

  • Kwak, Do Hyuk;Jung, Hwa Young;Lee, Jae Eun;Kang, Kwang Hee
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.2
    • /
    • pp.185-192
    • /
    • 2017
  • In this paper, we reviewed major design parameters for a solid type of deployable antenna and its structural design. We performed modal analysis for a single reflector panel made of aluminum and CFRP (carbon fiber reinforced plastic) to confirm the appropriateness of selected materials. We then predicted the elastic modulus of CFRP using the principles of unidirectional composite elasticity stiffness predictions such as the ROM (Rule of Mixture) and HSR (Hart Smith 10% Rule). To optimize the shape of the antenna reflector, a structural stiffness analysis was performed using derived numerical optimization factors. Six structural stiffness analyses were performed using the constructed experimental design method. The resulting optimal shape conditions are proposed to meet the structural stiffness requirements while minimizing weight.