• Title/Summary/Keyword: Unidirectional Fiber Reinforced Plastic Composites

Search Result 16, Processing Time 0.018 seconds

Tribological Characteristics of Surface Modification by Carbon Fiber Reinforced Plastics (탄소섬유복합재의 표면개질에 따른 트라이볼로지 특성에 관한 연구)

  • Kim, Jong-Hee;Jeon, Seung-Hong;Lee, Bong-Goo;Oh, Seong-Mo
    • Tribology and Lubricants
    • /
    • v.18 no.1
    • /
    • pp.61-67
    • /
    • 2002
  • The objective of the present study was to investigate the characteristics of the friction and wear according to the amount of ion-irradiation for the carbon fiber reinforced plastic (CFRP). Unidirectional carbon fiber reinforced composites were fabricated with epoxy resin as a matrix and carbon fiber as a reinforcement, and its surface was modified by the ion-assisted reaction. When the amount of ion-irradiation was $1{\times}10^{16}$ $ions/cm^{2}$. the friction coefficients of composites were about 0.1 and the wear mode was stable. whereas, the friction coefficient of non-treatment composites were about 0.16 and the wear mode was very unstable. But if the amount of ion-irradiation was $5{\times}10^{16}$ $ions/cm^{2}$, the friction coefficients were higher rather than that of $1{\times}10^{16}$ $ions/cm^{2}$ Consequently. the amount of ion-irradiation was not in proportion to the friction coefficients, and it was conformed that the optimal conditions would exist between both of them.

A Study on Fracture Behavior of Center Crack at Unidirectional CFRP due to Stacking Angle (적층각도에 따른 단방향 CFRP에서의 중앙 크랙의 파괴 거동에 관한 연구)

  • Park, Jae-Woong;Cheon, Seong-Sik;Cho, Jae-Ung
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.342-346
    • /
    • 2016
  • Carbon fiber reinforced plastic (CFRP), one of lightweight materials, is the fiber structure using carbon fiber. It is the composite material that has the characteristics of carbon and plastic. As for the fiber structure, it has the great strength due to fiber direction. CFRP for woven type is used mostly as such a CFRP with lightweight. Woven type is more stable when compared with unidirectional type. On the other hand, woven type is highly priced. Therefore, this study aims to analyze the fiber structure of unidirectional CFRP. In this study, as the stacking angle [0/X/-X/0], X is the variable. This is unidirectional CFRP in which the angle phase of X has been reversed and stacked. By using such a unidirectional CFRP, the analysis model which had a crack at the center as the form of panel with the thickness of 2 mm was used. On analysis, the load is applied on the upper and lower parts being connected with a pin. The damage in the area near center crack was investigated. As for the analysis model, 3D surface model was designed by using CATIA. For CFRP stacking, the stacking direction was determined by using ACP in ANSYS program and the analysis model with two stacks was made. Afterwards, the structural analysis was carried out.

Three-Dimensional Finite Element Analysis for Compression Molding of Step-Type Random/Unidirectional Polymer Composite Laminates (단부형상을 갖는 무배향/일방향 복합적층판의 압축성형에 있어서 3차원 유한요소해석)

  • 송강석;채경철;김이곤
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.101-106
    • /
    • 1999
  • Fiber reinforced plastic composites is widely used to make be lightening of aircraft and automotive owing to having high specific strength and specific modulus. And it is very important to know a charge shape in order to have good products in the compression molding. In particular, the product such as a bumper beam is composed of the random and unidirectional composite mats. Its deformation and charge shape are very different by stack type of random and unidirectional mats. In this paper, the characteristics of flow fronts such as a bulging phenomenon for step-type random/unidirectional composite mats and slip parameters are studied numerically. And the effects of viscosity ratio and stack type on the mold filling parameters are also discussed.

  • PDF

A study on structure analysis system for short fiber reinforced plastics (단섬유강화 플라스틱 복합재료 구조해석 기법연구)

  • Youn, Jee-Young;Kim, Sang-Woo;Park, Bong-Hyun;Lee, Seong-Hoon;Kwon, Tai-Hun;Kim, Ki-Tae
    • Composites Research
    • /
    • v.24 no.4
    • /
    • pp.41-47
    • /
    • 2011
  • This paper deals with anisotropic property and structural analysis for short fiber reinforced plastic composites manufactured by the injection molding process. The common approach for modeling this type of material is the consideration of the material as homogenous and isotropic. However, the common isotropy approach often results in unexpected failure. To overcome this, new structure analysis methodology was developed in order to consider fiber orientation effect using injection mold flow analysis and Halpin-Tsai equations for unidirectional composites and taking an orientation average. The numerical predictions are compared to experimental data for tensile specimen. The predicted mechanical properties agree well with experimental data for fiber orientation and weld line effect. The analysis system was also applied to an automobile part. The proposed anisotropic model predicted different mechanical properties by position of the part and different mechanical performance of the part was changed according to injection gate position.

Test and Finite Element Analysis on Compression after Impact Strength for Laminated Composite Structures of Unidirectional CFRP (일방향 탄소섬유강화 플라스틱 복합재 적층구조의 충격 후 압축강도 시험 및 유한요소해석)

  • Ha, Jae-Seok
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.321-327
    • /
    • 2016
  • In this study, tests and finite element analyses were performed regarding compression after impact strength for laminated composite structures of unidirectional carbon fiber reinforced plastic widely used in structural materials. Two lay-up sequences of composite laminates were selected as test specimens and four impact energy conditions were applied respectively. Impact and compressive strength tests were conducted in accordance with ASTM standards. Impact damages in test specimens were analyzed by using non-destructive inspection method of C-Scan, and compression after impact strengths were calculated with compressive test results. Progressive failure analysis method that can progressively simulate damages and fractures of fiber/matrix/lamina/laminate level was used for impact and compressive strength analyses. All analysis results including contact force, deflection, impact damages, compressive strengths, etc. were compared to test results, and the validity of analysis method was verified.

Inverse Estimation and Verification of Parameters for Improving Reliability of Impact Analysis of CFRP Composite Based on Artificial Neural Networks (인공신경망 기반 CFRP 복합재료 충돌 해석의 신뢰성 향상을 위한 파라미터 역추정 및 검증)

  • Ji-Ye Bak;Jeong Kim
    • Composites Research
    • /
    • v.36 no.1
    • /
    • pp.59-67
    • /
    • 2023
  • Damage caused by impact on a vehicle composed of CFRP(carbon fiber reinforced plastic) composite to reduce weight in the aerospace industries is related to the safety of passengers. Therefore, it is important to understand the damage behavior of materials that is invisible in impact situations, and research through the FEM(finite element model) is needed to simulate this. In this study, FEM suitable for predicting damage behavior was constructed for impact analysis of unidirectional laminated composite. The calibration parameters of the MAT_54 Enhanced Composite Damage material model in LS-DYNA were acquired by inverse estimation through ANN(artificial neural network) model. The reliability was verified by comparing the result of experiment with the results of the ANN model for the obtained parameter. It was confirmed that accuracy of FEM can be improved through optimization of calibration parameters.