• Title/Summary/Keyword: Unidirectional Fiber

Search Result 217, Processing Time 0.026 seconds

A Study on Molding Process Fiber Reinforced Plastic Composites (Flow analysis Measurement of viscosity of Unidirectional Fiber Reinforced Plastic Composites) (섬유강화 플라스틱 복합재의 성형공정에 관한 연구(일방향 섬유강화 복합재의 점도측정 및 유동해석))

  • 조선형;안종윤;이국웅;윤성운
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.2
    • /
    • pp.103-114
    • /
    • 2001
  • During a compression molding process of Unidirectional Fiber Reinforced Plastic Composites, control of filling patterns in mold and distribution of fiber is needed to predict the effects of molding parameters on the flow characteristics. To obtain an excellent product and decide optimum molding conditions, it is important to know the relationship between molding conditions and viscosity. In this study, the anisotropic viscosity of the Unidirectional Fiber Reinforced Plastic Composites is measured by using the parallel plastometer. The model for flow state has been simulated by using the viscosity. The composites is treated as an incompressible New-tonian fluid. The effects of longitudinal/transverse viscosity ration A and slip parameter $\alpha$ on buldging phenomenon and mold filling patterns, are also discussed.

  • PDF

3-Dimensional Deformation Analysis for Compression Molding of Polymeric Composites with Random/Unidirectional Fiber-Reinforced Laminates (무배향/일방향 섬유강화 적층매트를 갖는 플라스틱 복합재의 3차원 압축변형 해석)

  • 채경철;조선형;김이곤
    • Composites Research
    • /
    • v.12 no.5
    • /
    • pp.23-30
    • /
    • 1999
  • Fiber reinforced composite materials are widely used in automotive industry to produce parts that are large, thin, lightweight, strong and stiff. It is very important to know a charge shape in order to have good products in the compression molding. In particular, the product such as a bumper beam is composed of the random and unidirectional fiber mats. The characteristics of flow fronts such as a bulging phenomenon for random mat and unidirectional fiber mat and slip parameters are studied numerically. And the effects of viscosity ratio and stack type on mold filling parameters are also discussed.

  • PDF

Deformation Analysis for Compression Molding of Polymeric Composites with Random/ Unidirectional Fiber-reinforced laminates (무배향/일방향 섬유강화 적층매트를 갖는 플라스틱 복합판재의 압축변형 해석)

  • 조선형
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.188-194
    • /
    • 1999
  • Fiber reinforced composite materials are widely used in automotive industry to produce parts that are large, thin. lightweight. strong and stiff. It is very important to know a charge shape in order to have good products in the compression molding. In particular, the product such as a bumper beam is composed of the random and unidirectional fiber mats. This study analyzes numerically the characteristics of flow fronts such as a bulging phenomenon made by changing viscosity of random mat and unidirectional fiber mat and slip parameters. And it is discussed that the effect of ratio of viscosity A and stack type on mold filling parameters

  • PDF

Prediction of Elastic Modulus of Unidirectional Short Fiber Composite Materials (일방향으로 배열된 단섬유 보강 복합재료의 탄성률 예측)

  • 임태원;권영두;한경섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.2
    • /
    • pp.407-412
    • /
    • 1990
  • Elastic modulus of unidirectional short fiber composite has theoretically derived with the consideration of Poisson's ratios of matrix and fiber. Unidirectional short fiber composite is modeled as an aggregate of grains developed by Kerner. Under the assumption of extra strain at fiber ends, the strain distribution along the fiber's length is determined, and the elastic modulus is derived from this distribution. For the consideration of effects of Poisson's ratio, Kerner's results for particulate composites are adapted as boundary conditions. The effect of differences in Poisson's ratio of fiber and matrix on elastic modulus is studied. Proposed equation shows a good agreement with experimental data of Halpin and Tock, et al.

Effect of Unidirectional Carbon Fiber Sheet Manufacturing Process Using Coated Glass Fiber and Carbon Fiber on Concrete Reinforcement (유리섬유 코팅사와 탄소섬유를 이용한 일방향 탄소섬유시트 제조공정이 콘크리트 보강에 미치는 영향)

  • Kwon, Jieun;Kwon, Sunmin;Chae, Seehyeon;Jeong, Yedam;Kim, Jongwon
    • Textile Coloration and Finishing
    • /
    • v.34 no.3
    • /
    • pp.185-196
    • /
    • 2022
  • In this study, carbon fiber and coated glass fiber are applied to warp and weft fiber in order to reduce the amount of carbon fiber used in carbon fiber fabrics, which are often used for reinforcement of building structures. A low-cost thermoplastic resin was coated on glass fibers to prepare a shape-stabilizing glass fiber. A unidirectional carbon fiber sheet was manufactured using the prepared coated glass fiber and carbon fiber. In order to identify whether it can be used for reinforcing architectural and civil structures, it was attached to a concrete specimen and its mechanical properties were analyzed. The optimum manufacturing conditions for the coated glass fiber were 0.3 mm in diameter of the coating nozzle, the coating temperature was 190 ℃, and the coating speed was 0.3 m/s. 14 mm was optimal for the weft spacing of the coated glass fiber. The flexural strength of the concrete reinforced with the manufactured unidirectional carbon fiber sheet was slightly lower than that of the concrete reinforced with carbon fiber fabric, but it was confirmed that the reinforcement effect was better when the amount of carbon fiber was considered.

Electromagnetic Interference shielding effectiveness of carbon black / Glass fiber woven roving and Carbon fiber unidirectional fabric reinforced composite (카본블랙/섬유강화 복합재료의 전자파 차폐효과)

  • Kim J.S.;Han G.Y.;Ahn D.G.;Lee S.H.;Kim M.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1322-1325
    • /
    • 2005
  • The main objectives of this research work are to develop conductive glass fiber woven roving and carbon fiber unidirectional fabric composite materials and to determine their electromagnetic shielding effectiveness(EMSE). Epoxy is the matrix phase and glass, carbon fiber are the reinforcement phase of the composite material. Carbon black are incorporated as conductive fillers to provide the electromagnetic shielding properties of the composite material. The amount of carbon black in the composite material is varied by changing the carbon black composition, woven roving and unidirectional (fabric) structure. The EMSE of various fabric composites is measured in the frequency range from 300MHz to 800MHz. The variations of EMSE of woven roving and unidirectional composites with fabric structure, metal powder composite are described. Suitability of conductive fabric composites for electromagnetic shielding applications is also discussed.

  • PDF

Viscoelastic Analysis of Stress Intensity Factor for Interface Edge Crack in a Unidirectional Liminate (단일방향 복합재료의 공유면에 존재하는 계면 모서리균열의 점탄성 해석)

  • 이상순;김범식
    • Computational Structural Engineering
    • /
    • v.10 no.1
    • /
    • pp.129-134
    • /
    • 1997
  • Interfacial stress singularity in a unidirectional two-dimensional laminate model consisting of an elastic fiber and a viscoelastic matrix has been investigated using the time-domain boundary element method. First, the interfacial singular stresses between the fiber and the matrix of a unidirectional laminate subjected to a uniform transverse tensile strain have been investigated near the free surface, but without any defect or any edge crack. Such a stress singularity might lead to fiber-matrix debonding or interfacial edge cracks. Then, the overall stress intensity factor for the case of a small interfacial edge crack of length a has been computed.

  • PDF

Effect of Molding Parameters on Viscosity of Unidirectional Fiber Reinforced Plastic Composites (일방향 섬유강화 플라스틱 복합재의 점도에 미치는 성형인자의 영향)

  • 조선형;안종윤;윤성운
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.6
    • /
    • pp.41-48
    • /
    • 2000
  • The Compression molding process is widely used in the automotive industry to produce parts that are large, thin, light-weight, strong and stiff. Compression molded parts are formed by squeezing a glass fiber reinforced polypropylene sheet, known a glass mat thermoplastic(GMT), between two heated cavity surfaces. In this study, the anisotropic viscosity of the Unidirectional Fiber-Reinforced Plastic Composites is measured using the parallel plastometer and the composites is treated as an incompressible Newtonian fluid. The effects of molding parameter and fiber contents ratio on longitudinal/transverse viscosity are also discussed.

  • PDF

Three-Dimensional Flow Analysis for Compression Molding of Unidirectional Fiber-Reinforced Polymeric Composites with Slip Between Mold and Material (섬유강화 플라스틱 복합재의 압축성형에 있어서 이방성과 금형-재료계면의 미끄럼을 고려한 3차원 유한요소해석)

  • Yoon, Doo-Hyun;Jo, Seon-Hyung;Kim, E-Gon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.7 s.166
    • /
    • pp.1075-1084
    • /
    • 1999
  • The family of unidirectional continuous fiber reinforced polymeric composites are currently used in automotive bumper beams and load floors. The material properties and mechanical characteristics of the compression molded parts are determined by the curing behavior, fiber orientation and formation of knit lines, which are in turn determined by the mold filling parameters. In this paper, a new model is presented which can be used to predict the 3-dimensional flow under consideration of the slip of mold-composites and anisotropic viscosity of composites during compression molding of unidirectional fiber reinforced thermoplastics for isothermal state. The composites is treated as an incompressible Newtonian fluid. The effects of longitudinal/transverse viscosity ratio A and slip parameter $\alpha$ on the buldging phenomenon and mold filling patterns are also discussed.

Study on Thermal Behavior of Unidirectional Composite Materials using Embedded Optical Fiber Sensors (삽입되어진 광섬유 센서를 이용한 일방향 적층 복합재료의 열적 거동 연구)

  • 김승택;전흥재;최흥섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.251-257
    • /
    • 1999
  • Smart structure that contains sensors, which are either embedded in a composite material or attached to a structure, is currently receiving considerable attention. Fiber Bragg grating sensor, one of the optical fiber sensors, has been widely used to sense strain and temperature for smart structures since both parameters change the resonant frequency of the grating. In this paper, according to the various heating and cooling conditions the thermal behavior of unidirectional composite material was monitored by embedding the fiber Bragg grating sensors in the longitudinal and transverse directions of unidirectional composites. The thermal behavior of unidirectional composite material was monitored for various heating and cooling rates and applied pressure. It was found that the thermal behavior was unaffected by pressure variations and heating and cooling rates applied to the composites. The thermal strains were measured by considering the shift in Bragg wavelength that was generated by the thermal expansion of composite specimen. The longitudinal and transverse C.T.E.'s were also obtained from the corresponding temperature-thermal strain curves.

  • PDF