• Title/Summary/Keyword: Uniaxial stress

Search Result 571, Processing Time 0.031 seconds

The Changes of Aperture Variation and Hydraulic Conductivity for Compression Variability (압력에 따른 균열 간극변화와 수리전도도 변화 관찰)

  • 채병곤;이철우;정교철;김용제
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.4
    • /
    • pp.1-11
    • /
    • 2003
  • In order to measure aperture variation dependent on normal stress and to characterize on relationship between aperture variation and hydraulic conductivity this study measured apertures of rock fractures under a high resolution confocal laser scanning microscope (CLSM) with application of five stages of uniaxial normal stresses. From this method the response of aperture can be continuously characterized on one specimen by different loads of normal stress. The results of measurements showed a rough geometry of fracture bearing non-uniform aperture. They also revealed different values of aperture variations according to the load stages on each position along a fracture due to the fracture roughness. Laboratory permeability tests were also conducted to evaluate the changes of permeability coefficients related to the aperture variations by different loads. The results of permeability tests revealed that the hydraulic conductivity was not reduced at a fixed rate with increase of normal load. Moreover, the rates of aperture variations did not match to those of hydraulic conductivity. The hydraulic conductivity calculated in this study did not follow the cubic law, representing that the parallel plate model is not suitable to express the fracture geometry corresponding to the results of aperture measurements under the CLSM.

An Experimental Study on the Mechanical Properties of HPFRCCs Reinforced with the Micro and Macro Fibers (마이크로 및 매크로 섬유에 의해 보강된 고인성 시멘트 복합재료의 역학적 특성에 관한 실험적 연구)

  • Kim Moo-Han;Kim Jae-Hwan;Kim Yong-Ro;Kim Young-Duck
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.263-271
    • /
    • 2005
  • HPFRCC(High Performance Fiber Reinforced Cementitious Composite) is a class of FRCCs(Fiber Reinforced Cementitious Composites) that exhibit multiple cracking. Multiple cracking leads to improvement in properties such as ductility, toughness, fracture energy, strain hardening, strain capacity, and deformation capacity under tension, compression, and bending. These improved properties of HPFRCCs have triggered unique and versatile structural applications, including damage reduction, damage tolerance, energy absorption, crack distribution, deformation compatibility, and delamination resistance. These mechanical properties of HPFRCCs become different from the kinds and shapes of used fiber, and it is known that the effective size of fiber in macro crack is different from that in micro crack. This paper reports an experimental findings on the mechanical properties of HPFRCCs reinforced with the micro fiber(PP50, PVA100 and PVA200) and macro fiber(PVA660, SF500). Uniaxial compressive tests and three point bending tests are carried out in order to compare with the mechanical properties of HPFRCCs reinforced with micro fibers or hybrid fibers such as compressive strength, ultimate bending stress, toughness, deformation capacity and crack pattern under bending, etc.,

Numerical Simulation of 72m-Long Ultra High Performance Concrete Pre-Stressed Box Girder (72m 초고강도 콘크리트 프리스트레스트 박스 거더의 수치 해석)

  • Mai, Viet-Chinh;Han, Sang Mook
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.2
    • /
    • pp.73-82
    • /
    • 2022
  • The study presents a three-dimensional approach to simulate the nonlinear behavior of a 72 m long Ultra High Performance Fiber Reinforced Concrete (UHPFRC) pre-stressed box girder for a pedestrian bridge in Busan, South Korea. The concrete damage plasticity (CDP) model is adopted to model the non-linear behavior of the UHPFRC material, in which the material properties are obtained from uniaxial compressive and tensile tests. The simulation model based on the proposed stress-strain curve is validated by the results of four-point bending model tests of a 50 m UHPFRC pre-stressed box girder. The results from the simulation models agree with the experimental observations and predict the flexural behavior of the 50 m UHPFRC pre-stressed box girder accurately. Afterward, the validated model is utilized to investigate the flexural behavior of the 72 m UHPFRC pre-stressed box girder. Here, the load-deflection curve, stress status of the girder at various load levels, and connection details is analyzed. The load-deflection curve is also compared with design load to demonstrate the great benefit of the slender UHPFRC box girder. The obtained results demonstrate the applicability of the nonlinear finite element method as an appropriate option to analyze the flexural behavior of pre-stressed long-span girders.

Effects of Film Stack Structure and Peeling Rate on the Peel Strength of Screen-printed Ag/Polyimide (박막 적층 구조 및 필링 속도가 스크린 프린팅 Ag/Polyimide 사이의 필 강도에 미치는 영향)

  • Lee, Hyeonchul;Bae, Byeong-Hyun;Son, Kirak;Kim, Gahui;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.2
    • /
    • pp.59-64
    • /
    • 2022
  • Effects of film stack structure and peeling rate on the peel strength of screen-printed (SP) Ag/polyimide (PI) systems were investigated by a 90° peel test. When PI film was peeled at PI/SP-Ag and PI/SP-Ag/electroplated (EP) Cu structures, the peel strength was nearly constant regardless of the peeling rate. When EP Cu was peeled at EP Cu/SP-Ag/PI structure, the peel strength continuously increased as peeling rate increased. Considering uniaxial tensile test results of EP Cu/SP-Ag film with respect to loading rate, the increase of 90° plastic bending energy and peel strength was attributed to increased flow stress and toughness. On the other hand, viscoelastic PI film showed little variation of flow stress and toughness with respect to loading rate, which was assumed to result in nearly constant 90° plastic bending energy and peel strength.

Evaluation of Mechanical Performance Considering Prolonged Length of Glass Fiber-Reinforced Composite on Structure Weakness by Thermal Stress at Secondary Barrier in Cryogenic Liquified Gas Storage (극저온 액화가스 화물창 2차방벽 구조 열 응력 취약 부 Prolonged 길이 고려 유리섬유 강화 복합재 기계적 물성 평가)

  • Yeon-Jae Jeong;Hee-Tae Kim;Jeong-Dae Kim;Jeong-Hyun Kim;Seul-Kee Kim;Jae-Myung Lee
    • Composites Research
    • /
    • v.36 no.4
    • /
    • pp.246-252
    • /
    • 2023
  • A secondary barrier made of glass fiber reinforced composites has been installed infinitely using automatic bonding machine(ABM) in membrane type LNG cargo containment system (CCS). At the same time, significant thermal stress due to cryogenic heat shrinkage has occurred in the composite on the non-bonding area between the adhesive fixation at both ends. There have been studies from the perspective of structural safety evaluation taking this into account, but none that have analyzed mechanical property taking an prolonged length into account. In this study, 2-parameter Weibull distribution statistical analysis was used to standardize reliable mechanical property for actual length, taking into account the composite's brittle fracture of ceramic material with wide fracture strength dispersion. Related experimental data were obtained by performing uniaxial tensile tests at specific temperatures below cryogenic condition considering LNG environment. As a result, the mechanical strength increased about 1.5 times compared to -20℃ at -70℃ and initial non-linear behavior of fiber stretched was suppressed. As the temperature decreased until the cryogenic, the mechanical strength continued to increase due to cold brittleness. The suggested mechanical property in this study would be employed to secure reliable analysis support material property when assessing the safety of secondary barrier's structures.

Scarf Welding of Thin Substrates and Evaluation of the Tensile Properties (박형 기판의 사면 접합 공정 및 인장 특성 평가)

  • Beomseok Kang;Jeehoo Na;Myeong-Jun Ko;Minjeong Sohn;Yong-Ho Ko;Tae-Ik Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.3
    • /
    • pp.102-110
    • /
    • 2023
  • This paper introduces scarf welding process of thin substrates using flexible laser transmission welding (f-LTW) technology. We examined the behavior of tensile strength relative to the scarf angle for flexible applications. Thin plastic substrates with the thickness of less than 100 ㎛ were bonded and a jig to form a slope at the edge of the substrate was developed. By developing the scarf welding process, we successfully created a flexible bonding technology that maintains joint's thickness after the process. The tensile strength of the joint was assessed through uniaxial test, and we found that the tensile strength increases as the slope of bonding interface decreases. By conducting stress analysis at the bonding interface with respect to the slope angle, design factor of bonding structure was investigated. These findings suggest that the tensile strength depends on the geometry of the joint, even under the same process conditions, and highlights the significance of considering the geometry of the joint in welding processes.

Simple Formulae for Buckling and Ultimate Strength Estimation of Plates Subjected to Water Pressure and Uniaxial Compression (수압(水壓)과 압축력(壓縮力)을 받는 평판(平板)의 좌굴(挫屈) 및 최종강도(最終强度) 추정식(推定式))

  • Jeom-K.,Paik;Chang-Y.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.25 no.4
    • /
    • pp.69-80
    • /
    • 1988
  • This paper proposes simple formulae for buckling and ultimate strength estimation of plates subjected to water pressure and uniaxial compression. For the construction of a formula for elastic buckling strength estimation, parametric study for actual ship plates with varying aspect ratios and the magnitude of water pressure is carried out by means of principle of minimum potential energy. Based on the results by parametric study, a new formula is approximately expressed as a continuous function of loads and aspect ratio. On the other hand, in order to get a formula for ultimate strength estimation, in-plane stress distribution of plates is investigated through large deflection analysis and total in-plane stresses are expressed as an explicit form. By applying Mises's plasticity condition, ultimate strength criterion is then derives. In the case of plates under relatively small water pressure, the results by the proposed formulae are in good agreement compared with those by other methods and experiment. But present formula overestimates the ultimate strength in the range of large water pressure. However, actual ship plates are subjected to relatively small water pressure except for the impact load due to slamming etc.. Therefore, it is considered that present formulae can be applied for the practical use.

  • PDF

Effect of Temperature and Aging on the Relationship Between Dynamic and Static Elastic Modulus of Concrete (온도와 재령이 콘크리트의 동탄성계수와 정 탄성계수의 상관관계에 미치는 영향)

  • 한상훈;김진근;박우선;김동현
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.610-618
    • /
    • 2001
  • This paper investigates the relationships between dynamic elastic modulus and static elastic modulus or compressive strength according to curing temperature, aging, and cement type. Based on this investigation, the new model of the relationships we proposed. Impact echo method estimates the resonant frequency of specimens and uniaxial compression test measures the static elastic modulus and compressive strength. Type I and V cement concretes, which have the water-cement ratios of 0.40 and 0.50, are cured under the isothermal curing temperatures of 10, 23, and 50$\^{C}$ Cement type and aging have no large influence on the relationship between dynamic and static elastic modulus, but the ratio of dynamic and static elastic modulus comes close to 1 as temperature increases. Initial chord elastic modulus which is calculated at lower strain level of stress-strain curve, has the similar value to dynamic elastic modulus. The relationship between dynamic elastic modulus and compressive strength has the same tendency as the relationship between dynamic and static elastic modulus according to cement type, temperature and aging. The proposcd relationship equations between dynamic elastic modulus and static elastic modulus or compressive strength properly estimates the variation of relationships according to cement type md temperature.

Evaluation of the State of Rocks in Load Steps by Low-frequency Ultrasonic Flaw Detection (저주파 결함 탐지법에 의한 하중 단계에 따른 암석 내부의 상태 평가)

  • Kang, Seong-Seung;Kim, Jongheuck;Noh, Jeongdu;Na, Tae-Yoo;Jang, Hyongdoo;Ko, Chin-Surk
    • The Journal of Engineering Geology
    • /
    • v.27 no.1
    • /
    • pp.51-58
    • /
    • 2017
  • The purpose of this study was to quantitatively evaluate the state of rocks in load steps by using the low-frequency ultrasonic flaw detection method. The initial Vp-velocities measured with a CND tester were in the order of Z-axis < X-axis < Y-axis, with 1687.5 m/s along the X-axis, 1690.7 m/s along the Y-axis, 1548.3 m/s along the Z-axis, and an average of 1642.2 m/s. The overall average of the Q vlaues, measured with a Silver Schmidt hammer, was 62.6, which corresponds to a uniaxial compressive strength of ~105 MPa. The Vp-velocity, measured with a low-frequency ultrasonic flaw detector at load steps of 50%, 60%, 70%, and 80%, typically decreases in the order of X-axis < Y-axis < Z-axis with increasing load steps. This oder contrasts with that of the initial Vp-velocities. As the load step increases the factors that reduce the Vp-velocity in the X-axis direction are more influential than those in the Y-axis or Z-axis directions. This indicates that the initial state of rocks can vary and is dependent on the stress state.

Evaluation of Cave-in Possibility of a Shallow Depth Rock Tunnel by Rock Engineering Systems and Uumerical Analyses (암반공학시스템과 수치해석을 이용한 저심도 암반터널에서의 붕락 발생 가능성 평가)

  • Kim, Man-Kwang;Yoo, Young-Il;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.19 no.3
    • /
    • pp.236-247
    • /
    • 2009
  • Overpopulation has significantly increased the use of underground spaces in urban areas, and led to the developments of shallow-depth underground space. Due to unexpected rock fall, however, it is very necessary to understand and categorize the rock mass behaviors prior to the tunnel excavation, by which unnecessary casualties and economic loss could be prevented. In case of cave-in, special attention should be drawn since it occurs faster and greater in magnitude compared to rock fall and plastic deformation. Types of cave-in behavior are explained and categorized using seven parameters - Uniaxial Compressive Strength (UCS), Rock Quality Designation (RQD), joint surface condition, in-situ stress condition, ground water condition, earthquake & ground vibration, tunnel span. This study eventually introduces a new index called Cave-in Behavior Index (CBI) which explains the behavior of cave-in under given in-situ conditions expressed by the seven parameters. In order to assess the mutual interactions of the seven parameters and to evaluate the weighting factors for all the interactions, survey data of the experts' opinions and Rock Engineering Systems (RES) were used due to lack of field observations. CBI was applied to the tunnel site of Seoul Metro Line No. 9. UDEC analyses on 288 cases were done and occurrences of cave-in in every simulation were examined. Analyses on the results of 288 cases of simulations revealed that the average CBI for the cases when cave-in for different patterns of tunnel support was estimated by a logistic regression analysis.