• Title/Summary/Keyword: Uniaxial stress

Search Result 571, Processing Time 0.024 seconds

Influence of Inclined Holes in Measurement of Residual Stress by the Hole Drilling Method

  • Kim, Cheol;Yang, Won-Ho;Heo, Sung-Pil
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1647-1654
    • /
    • 2001
  • The hole drilling method is widely used in measuring residual stress in surfaces. In this method, the inclination of holes is one of the sources of error. This paper presents a finite element analysis of the influence of inclined holes on the uniaxial residual stress field. The error in stress has been found to increase proportionally to the correct inclined angle of the hole. The correction equations by which one may easily obtain the residual stress, taking account of the inclined angle and direction, have been derived. The error of stress due to the inclined hole has been reduced to around 1% using the correction equations.

  • PDF

Stress dependent relaxation time in large deformation

  • Waluyo, Sugeng
    • Structural Engineering and Mechanics
    • /
    • v.61 no.3
    • /
    • pp.317-323
    • /
    • 2017
  • This work presents a new strategy to model stress dependent relaxation process in large deformation. The strategy is relied on the fact that in some particular soft materials undergoing large deformation, e.g., elastomers, rubbers and soft tissues, the relaxation time depends strongly on stress levels. To simplify the viscoelastic model, we consider that the relaxation time is the function of previous elastic deviatoric stress state experienced by materials during loading. Using the General Maxwell Model (GMM), we simulate numerically conditions with the constant and the stress dependent relaxation time for uniaxial tension and compression loading. Hence, it can be shown that the proposed model herein not only can represent different relaxation time for different stress level but also maintain the capability of the GMM to model hysteresis phenomena.

The Improvement of Biaxial Flexure Test (BFT) Method for Determination of the Biaxial Flexure Tensile Strength of Concrete (콘크리트 이방향 휨인장강도 결정을 위한 이방향 휨인장강도 시험법 개선)

  • Kim, Jihwan;Zi, Goangseup;Oh, Hongseob
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5A
    • /
    • pp.389-397
    • /
    • 2011
  • In this study, an experiment for the biaxial behavior of specimens was carried out to identify whether the isotropic flexure tensile stress of concrete in the BFT method is feasible. Another experiment for the improvement of the BFT method was conducted to ensure the isotropic flexure tensile stress of BFT specimens during the test. In addition, the biaxial flexure strength of concrete given by the improved BFT method was compared to the uniaxial flexure strength by the four-point bending test. Test results show that the isotropic flexure tensile stress of concrete using the BFT method was highly influenced by the surface conditions and warping of the specimens. Using improved BFT method, we could obtained the isotropic flexure tensile stress of concretes. The biaxial flexure strength of BFT was about 32% greater than the uniaxial flexure strength of the four-point bending test. In the experiment, with the smaller scatter, the improved BFT method gave a reliable biaxial flexure strength like the four-point bending test.

Asymmetric Yield Functions Based on the Stress Invariants J2 and J3(II) (J2 와 J3 불변량에 기초한 비대칭 항복함수의 제안(II))

  • Kim, Y.S;Nguyen, P.V.;Ahn, J.B.;Kim, J.J.
    • Transactions of Materials Processing
    • /
    • v.31 no.6
    • /
    • pp.351-364
    • /
    • 2022
  • The yield criterion, or called yield function, plays an important role in the study of plastic working of a sheet because it governs the plastic deformation properties of the sheet during plastic forming process. In this paper, we propose a modified version of previous anisotropic yield function (Trans. Mater. Process., 31(4) 2022, pp. 214-228) based on J2 and J3 stress invariants. The proposed anisotropic yield model has the 6th-order of stress components. The modified version of the anisotropic yield function in this study is as follows. f(J20,J30) ≡ (J20)3 + α(J30)2 + β(J20)3/2 × (J30) = k6 The proposed anisotropic yield function well explains the anisotropic plastic behavior of various sheets such as aluminum, high strength steel, magnesium alloy sheets etc. by introducing the parameters α and β, and also exhibits both symmetrical and asymmetrical yield surfaces. The parameters included in the proposed model are determined through an optimization algorithm from uniaxial and biaxial experimental data under proportional loading path. In this study, the validity of the proposed anisotropic yield function was verified by comparing the yield surface shape, normalized uniaxial yield stress value, and Lankford's anisotropic coefficient R-value derived with the experimental results. Application for the proposed anisotropic yield function to AA6016-T4 aluminum and DP980 sheets shows symmetrical yielding behavior and to AZ31B magnesium shows asymmetric yielding behavior, it was shown that the yield locus and yielding behavior of various types of sheet materials can be predicted reasonably by using the proposed anisotropic yield function.

Yield Functions Based on the Stress Invariants J2 and J3 and its Application to Anisotropic Sheet Materials (J2 와 J3 불변량에 기초한 항복함수의 제안과 이방성 판재에의 적용)

  • Kim, Y.S;Nguyen, P.V.;Kim, J.J.
    • Transactions of Materials Processing
    • /
    • v.31 no.4
    • /
    • pp.214-228
    • /
    • 2022
  • The yield criterion, or called yield function, plays an important role in the study of plastic working of a sheet because it governs the plastic deformation properties of the sheet during plastic forming process. In this paper, we propose a novel anisotropic yield function useful for describing the plastic behavior of various anisotropic sheets. The proposed yield function includes the anisotropic version of the second stress invariant J2 and the third stress invariant J3. The anisotropic yield function newly proposed in this study is as follows. F(J2)+ αG(J3)+ βH (J2 × J3) = km The proposed yield function well explains the anisotropic plastic behavior of various sheets by introducing the parameters α and β, and also exhibits both symmetrical and asymmetrical yield surfaces. The parameters included in the proposed model are determined through an optimization algorithm from uniaxial and biaxial experimental data under proportional loading path. In this study, the validity of the proposed anisotropic yield function was verified by comparing the yield surface shape, normalized uniaxial yield stress value, and Lankford's anisotropic coefficient R-value derived with the experimental results. Application for the proposed anisotropic yield function to aluminum sheet shows symmetrical yielding behavior and to pure titanium sheet shows asymmetric yielding behavior, it was shown that the yield curve and yield behavior of various types of sheet materials can be predicted reasonably by using the proposed new yield anisotropic function.

합성 전단벽에 대한 대각 압축 응력장 접근법

  • Lee, Eo-Jin;Hong, Sung-Gul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.5-6
    • /
    • 2010
  • In this study, assuming that there is a diagonal uniaxial compression field in combination with triangular homogeneous stress fields in the cracked concrete wall and a tensile stress of a steel plate occurs in the perpendicular to the direction of the diagonal compression field, an ultimate shear strength of a slender composite shear wall is estimated.

  • PDF

A study on critical strain based damage-controlled test for the evaluation of rock tunnel stability (암반터널 안정성 평가를 위한 손상제어실험 기반의 한계변형률에 관한 연구)

  • Lee, Kang-Hyun;Kim, Do-Hoon;Park, Jeong-Jun;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.6
    • /
    • pp.501-517
    • /
    • 2011
  • In general, the tunnel stability during excavation is assessed by comparing measured displacements at roof and sidewall to control criteria. The control criteria were established based on the past experience that considered ground conditions, size of the tunnel cross section, construction method, supports, etc. Therefore, a number of researches on the control criteria using the critical strain have been conducted. However, the critical strain obtained from uniaxial compression tests have drawbacks of not taking damage in rock mass due to increase of stress level and longitudinal arching into account. In this paper, damage-controlled tests simulating stress level and longitudinal arching during tunnel excavation were carried out in addition to uniaxial compression tests to investigate the critical strain characteristics of granite and gneiss that are most abundant rock types in Korean peninsula. Then, the critical strains obtained from damage-controlled tests were compared to those from uniaxial compression tests; the former showed less values than the latter. These results show that the critical strain obtained from uniaxial compression tests has to be reduced a little bit to take stress history during tunnel excavation into account. Moreover, the damage critical strain was proposed to be used for assessment of the brittle failure that usually occurs in deep tunnels.

Damage Characteristics of Rocks by Uniaxial Compression and Cyclic Loading-Unloading Test (일축압축시험과 반복재하시험을 이용한 암석의 손상특성 분석)

  • Jeong, Gyn-Young;Jang, Hyun-Sic;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.31 no.2
    • /
    • pp.149-163
    • /
    • 2021
  • Damage characteristics of granite, marble and sandstone whose properties were different were investigated by uniaxial compression test and cyclic loading-unloading test. Strength, elastic constants and damage threshold stresses were measured by uniaxial compression test and were compared with those measured by cyclic loading-unloading test. Average rock strengths measured by cyclic loading-unloading test were either lower than or similar with those measured by uniaxial compression test. Rocks with high strength and low porosity were more sensitive to fatigue than that with low strength and high porosity. Although permanent strains caused by cyclic loading-unloading were different according to rock types, they could be good indicators representing damage characteristics of rock. Damage threshold stress of granite and marble might be measured from stress-permanent strain curves. Acoustic emissions were measured during both tests and felicity ratios which represented damage characteristics of rocks were calculated. Felicity ratio of sandstone which was weak in strength and highly porous could not be calculated because of very few measurements of acoustic emissions. On the other hand, damage threshold could be predicted from felicity ratios of granite and marble which were brittle and low in porosity. The deformation behaviors and damage characteristics of rock mass could be investigated if additional tests for various rock types were performed.

Stress-Strain Properties of recycled-PET Polymer Concrete (PET 재활용 폴리머 콘크리트의 응력-변형률 특성)

  • Jo, Byung-Wan;Park, Jong-Hwa;Park, Seung-Kook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.316-319
    • /
    • 2004
  • Resins using recycled PET offer the possibility of a lower source cost of materials for making useful polymer concrete products. The purposed of this paper is to propose the model for the stress-strain relation of recycled-PET polymer concrete at monotonic uniaxial compression and is to investigate for the stress-strain behavior characteristics of recycled-PET polymer concrete with different variables(strength, resin contents, curing conditions, addition of silane and ages). The maximum stress and strain of recycled-PET polymer concrete was found to increase with an increase in resin content, however, it decreased beyond a particular level of resin content. A ascending and descending branch of stress-strain curve represented more sharply at high temperature curing more than normal temperature curing. In addition, results show that the proposed model accurately predicts the stress-strain relation of recycled-PET polymer concrete.

  • PDF

Stress Measurement of Steel Bar Using Magnetoelasticity (자기유도현상을 이용한 철근 응력측정)

  • Rhim Hong-Chul;Cho Young-Sik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.77-81
    • /
    • 2006
  • An attempt has been made to measure existing steel stress using magnetoelasticity. A device has been developed and used for the measurement of magnetism in response to the deformation of a steel bar. The proposed technique can be used for the assessment of existing reinforced concrete structures by the measurements of steel stress embedded inside concrete. A traditional technique requires to break the existing steel bar to measure existing strain. However, the proposed technique is developed to measure the stress without damaging the steel bar. A successful application of magnetoelasticity depends on the establishment of relationship between elastic and magnetic response due to loading. To investigate the correlation between the two, steel bars are loaded in tension under uniaxial loading while the magnetic reading is recorded. Based on the test results, equations are suggested to predict stress for steel bars with different diameters.

  • PDF