• Title/Summary/Keyword: Uniaxial Tensile Test

Search Result 230, Processing Time 0.023 seconds

Mechanical testing of the behavior of steel 1.7147 at different temperatures

  • Brnic, Josip;Turkalj, Goran;Canadija, Marko
    • Steel and Composite Structures
    • /
    • v.17 no.5
    • /
    • pp.549-560
    • /
    • 2014
  • The paper provides the test results and analysis on the behavior of steel 1.7147 at different temperatures. Mechanical uniaxial tests were used to determine mechanical properties, resistance to creep and Charpy impact tests to determine impact energy. Test results are presented in the form of engineering stress-strain diagrams, creep curves as well as numerical data related to impact energy. The results show that the tensile strength has the highest value at room temperature, and the same goes for the yield strength as well as for modulus of elasticity. After room temperature both of mentioned properties decrease with temperature increasing. Some of creep curves were modeled using rheological models and analytical equation. Based on Charpy impact energy an assessment of fracture toughness was made.

The effect of anti-stripping on asphalt mixtures depending on the types of anti-stripping agents (박리방지제에 따른 아스팔트 혼합물의 박리방지 특성 연구)

  • Kim, Won Jae;Tran Van, Phuc;Do Thanh, Chung;Park, Chang Kyu;Lee, Hyun Jong
    • International Journal of Highway Engineering
    • /
    • v.19 no.2
    • /
    • pp.127-135
    • /
    • 2017
  • PURPOSES: The objective of this study is to evaluate the effect of anti-stripping on asphalt mixtures constituting anti-stripping agents. METHODS : Based on the literature review, asphalt mixture added with anti-stripping agents was prepared, and these asphalt mixtures were evaluated for anti-stripping properties for each anti-stripping agent through various lab tests, namely, tensile strength ratio (TSR), dynamic immersion test, uniaxial compression test, and indirect tensile strength test (IDT). The liquid anti-stripping agents used in the lab test were premixed with each asphalt binder (PG 64-22, PG 76-22) before being mixed with the aggregate. RESULTS :The result of the TSR test revealed that the effect of anti-stripping was highest when hydrated lime and liquid anti-stripping agent W were added. The correlation coefficient $R^2$ between the TSR result and cohesion ratio is 0.99, which indicates that the sensitivity of the TSR to moisture damage is reliable from the mechanical point of view. The covering ratio of the asphalt binder to the liquid anti-stripping agent W was determined to be higher than that to the other liquid anti-stripping agents. CONCLUSIONS :It is considered that the improved moisture resistance of asphalt mixture as a result of the use of anti-stripping agents can reduce the incidence of various pavement damages such as portholes caused by stripping, and the performance life of the asphalt road pavement can be prolonged.

Compressive Strength and Tensile Behavior of Ultra-High Performance Concrete and High-Ductile Cementless Composite (초고성능 콘크리트와 고연성 무시멘트 복합재료의 압축 및 인장성능)

  • Choi, Jeong-Il;Park, Se Eon;Lee, Bang Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.69-75
    • /
    • 2017
  • Ultra-high performance concrete and high ductile cementless composite are considered as promising construction materials because those exhibits higher performance in terms of high strength and high ductility. The purpose of this study is to investigate experimentally the compressive strength and tensile behavior of ultra-high performance concrete and high ductile cementless composite. A series of experiments including density, compressive strength, and uniaxial tension tests were performed. Test results showed that the compressive strength and tensile strength of alkali-activated slag based high ductile cementless composite were lower than those of ultra-high performance concrete. However, the tensile strain capacity and toughness of alkali-activated slag based high ductile cementless composite were higher than those of ultra-high performance concrete. And it was exhibited that a high ductility up to 7.89% can be attainable by incorporating polyethylene fiber into the alkali-activated slag based cementless paste.

Study on the Effect of SBR Latex on the Properties of Soil Pavement (SBR Latex를 이용한 흙 포장의 재료특성 연구)

  • Lee, Sang Yum;Hwang, Sung Do;Yang, Sung Lin
    • International Journal of Highway Engineering
    • /
    • v.16 no.5
    • /
    • pp.73-82
    • /
    • 2014
  • PURPOSES : The purpose of this study is to determine the optimum addition rate of SBR latex through the evaluation of durability and strength of SBR latex applied soil pavement. Formerly used materials such as fly ash and cement in soil pavement had resulted in decreased durability due to micro crack by heat of hydration and shrinkage crack in winter. However, that agglutinated polymers help adhesion to aggregate increased comes up with preventing the crack opening when the number of capillary tubes of SBR latex get decreased in the hydration process of cement. Therefore, in this study, it is suggested that the evaluation of the field applicability of soil pavement be conducted through the performance lab test in terms of strength increment, adhesion improvement, and crack resistance based on SBR latex addition rate. METHODS : In order to evaluate the field applicability of soil pavement, SBR latex was added 0 to 3% by 1% increment, with fixed cement contents of 3% and 5%. The resistance of shear failure and crack of soil pavement were evaluated by performing the uniaxial compressive strength test and indirect tensile strength test at -20 and $20^{\circ}C$, respectively. RESULTSCONCLUSIONS : It was found out that from both tests, resistance of shear failure and crack were improved with increment of curing time, and especially more than 2% of SBR latex addition rate and 5% cement content gave better results.

Evaluation of Deformation Capacity of Various Steel Springs Subjected to Tensile Loading or Uniaxial Cyclic Loading (인장하중 및 반복하중을 받는 강재 스프링의 변형 성능 평가)

  • Kwon, Hee-Yong;Hwang, Seung-Hyeon;Yang, Keun-Hyeok;Kim, Sanghee;Choi, Yong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.4
    • /
    • pp.1-10
    • /
    • 2022
  • In this study, to evaluate the possibility of using a steel spring as a displacement-dependent damping device, tensile loading and cyclic loading tests were performed. The main experimental variables were the type of steel (SAE9254 and SS275), the spring constant (700 N/mm, 1,000 N/mm, and 1,400 N/mm), and the presence or absence of heat treatment for SAE9254. As a result of the tensile test, the ratios of the measured spring constant to the design spring constant of the steel springs made with SAE9254 ranged from 1.08 to 1.13, while the ratios of the design spring constant and the measured spring constant of the steel springs made with SS275 ranged from 0.86 to 0.97. After yielding, the slope values of the load-displacement curve of the SAE9254 with/without heat treatment were about 240~251 N/mm and 92 N/mm, respectively, but the slope values of the load-displacement response of SS275 were almost zero. According to the uniaxial cyclic loading test results, all specimens were satisfied with three conditions for a displacement-dependent damping device in KDS 41 17 00 (2019): the maximum force and minimum force at zero displacement, the maximum force and minimum force at the maximum displacement, and the energy dissipation capacity. In addition, the equivalent damping ratios of steel springs made with SAE9254(non-heat treatment) and SS275 were approximately 2.8 times and 1.9 times greater, respectively, than that of steel springs made with SAE9254.

Application of Image Processing Method to Evaluate Ultimate Strain of Rebar (철근의 한계상태변형률 평가를 위한 이미지 프로세싱의 적용)

  • Kim, Seong-Do;Jung, Chi-Young;Woo, Tae-Ryeon;Cheung, Jin-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.111-121
    • /
    • 2016
  • In this study, measurements were conducted by image processing to do an in-depth evaluation of strain of rebar in a uniaxial tension test. The distribution of strain and the necking region were evaluated. The image processing is used to analyze the color information of a colored image, so that the parts consistent with desired targets can be distinguished from the other parts. After this process, the image was converted to a binary one. Centroids of each target region are obtained in the binary images. After repeating such process on the images from starting point to the finishing point of the test, elongation between targets is calculated based on the centroid of each target. The tensile test were conducted on grade 60 #7(D22) and #9(D29) rebars fabricated in accordance with ASTM A615 standards. Strain results from image processing were compared to the results from a conventional strain gauge, in order to see the validity of the image processing. With the image processing, the measuring was possible in not only the initial elastic region but also the necking region of more than 0.5(50%) strain. The image processing can remove the measuring limits as long as the targets can be video recorded. It also can measure strain at various spots because the targets can easily be attached and detached. Thus it is concluded that the image processing helps overcome limits in strain measuring and will be used in various ways.

Parameter calibrations and application of micromechanical fracture models of structural steels

  • Liao, Fangfang;Wang, Wei;Chen, Yiyi
    • Structural Engineering and Mechanics
    • /
    • v.42 no.2
    • /
    • pp.153-174
    • /
    • 2012
  • Micromechanical facture models can be used to predict ductile fracture in steel structures. In order to calibrate the parameters in the micromechanical models for the largely used Q345 steel in China, uniaxial tensile tests, smooth notched tensile tests, cyclic notched bar tests, scanning electron microscope tests and finite element analyses were conducted in this paper. The test specimens were made from base metal, deposit metal and heat affected zone of Q345 steel to investigate crack initiation in welded steel connections. The calibrated parameters for the three different locations of Q345 steel were compared with that of the other seven varieties of structural steels. It indicates that the toughness index parameters in the stress modified critical strain (SMCS) model and the void growth model (VGM) are connected with ductility of the material but have no correlation with the yield strength, ultimate strength or the ratio of ultimate strength to yield strength. While the damage degraded parameters in the degraded significant plastic strain (DSPS) model and the cyclic void growth model (CVGM) and the characteristic length parameter are irrelevant with any properties of the material. The results of this paper can be applied to predict ductile fracture in welded steel connections.

Multi-scale Progressive Failure Analysis of Triaxially Braided Textile Composites

  • Geleta, Tsinuel N.;Woo, Kyeongsik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.436-449
    • /
    • 2017
  • In this paper, the damage and failure behavior of triaxially braided textile composites was studied using progressive failure analysis. The analysis was performed at both micro and meso-scales through iterative cycles. Stress based failure criteria were used to define the failure states at both micro- and meso-scale models. The stress-strain curve under uniaxial tensile loading was drawn based on the load-displacement curve from the progressive failure analysis and compared to those by test and computational results from reference for verification. Then, the detailed failure initiation and propagation was studied using the verified model for both tensile and compression loading cases. The failure modes of each part of the model were assessed at different stages of failure. Effect of ply stacking and number of unit cells considered were then investigated using the resulting stress-strain curves and damage patterns. Finally, the effect of matrix plasticity was examined for the compressive failure behavior of the same model using elastic, elastic - perfectly plastic and multi-linear elastic-plastic matrix properties.

Performance of concrete structures with a combination of normal SCC and fiber SCC

  • Farhang, Kianoosh;Fathi, Hamoon
    • Computers and Concrete
    • /
    • v.20 no.6
    • /
    • pp.655-661
    • /
    • 2017
  • Fiber reinforced concretes exhibit higher tensile strength depending on the percent and type of the fiber used. These concretes are used to reduce cracks and improve concrete behavior. The use of these fibers increases the production costs and reduces the compressive strength to a certain extent. Therefore, the use of fiber reinforced concrete in regions where higher tensile strength is required can cut costs and improve the overall structural strength. The behavior of fiber reinforced concrete and normal concrete adjacent to each other was investigated in the present study. The concrete used was self-compacting and did not require vibration. The samples had 0, 1, 2 and 4 wt% polypropylene fibers. 15 cm sample cubes were subjected to uniaxial loads to investigate their compressive strength. Fiber Self-Compacting Concrete was poured in the mold up to 0, 30, 50, 70 and 100 percent of the mold height, and then Self-Compacting Concrete without fiber was added to the empty section of that mold. In order to investigate concrete behavior under bending moment, concrete beam samples with similar conditions were prepared and subjected to the three-point bending flexural test. The results revealed that normal Self-Compacting Concrete and Fiber Self-Compacting Concrete may be used in adjacent to each other in structures and structural members. Moreover, no separation was observed at the interface of Fiber Self-Compacting Concrete and Self-Compacting Concrete, either in the cubic samples under compression or in the concrete beams under bending moment.

Obtaining Mechanical Properties of Fe Powder Using a Combined Nanoindentation and the Finite Element Method (나노인덴테이션과 유한요소법을 결합한 철 분말의 기계적 물성 취득)

  • Jeong, Hyeok Jae;Lee, Dong Jun;Yoon, Eun Yoo;Lee, Eon Sik;Kim, Nack Joon;Kim, Hyeong Seop
    • Journal of Powder Materials
    • /
    • v.20 no.4
    • /
    • pp.280-284
    • /
    • 2013
  • Stress-strain curves are fundamental properties to study characteristics of materials. Flow stress curves of the powder materials are obtained by indirect testing methods, such as tensile test with the bulk materials and powder compaction test, because it is hard to measure the stress-strain curves of the powder materials using conventional uniaxial tensile test due to the limitation of the size and shape of the specimen. Instrumented nanoindentation can measure mechanical properties of very small region from several nanometers to several micrometers, so nanoindentation technique is suitable to obtain the stress-strain curve of the powder materials. In this study, a novel technique to obtain the stress-strain curves using the combination of instrumented nanoindentation and finite element method was introduced and the flow stress curves of Fe powder were measured. Then obtained stress-strain curves were verified by the comparison of the experimental results and the FEA results for powder compaction test.