DOI QR코드

DOI QR Code

Obtaining Mechanical Properties of Fe Powder Using a Combined Nanoindentation and the Finite Element Method

나노인덴테이션과 유한요소법을 결합한 철 분말의 기계적 물성 취득

  • Jeong, Hyeok Jae (Department of Materials and Engineering, Pohang University of Science and Technology) ;
  • Lee, Dong Jun (Department of Materials and Engineering, Pohang University of Science and Technology) ;
  • Yoon, Eun Yoo (Korea Institute of Materials Science, Light Metal Devision, Materials Deformation Department) ;
  • Lee, Eon Sik (Research Institute of Industrial Science and Technology) ;
  • Kim, Nack Joon (Graduate Institute of Ferrous Technology, Pohang University of Science and Technology) ;
  • Kim, Hyeong Seop (Department of Materials and Engineering, Pohang University of Science and Technology)
  • 정혁재 (포항공과대학교 신소재공학과) ;
  • 이동준 (포항공과대학교 신소재공학과) ;
  • 윤은유 (한국 재료연구소 경량금속단 변형제어연구실) ;
  • 이언식 (포항산업과학연구원) ;
  • 김낙준 (포항공과대학교 철강대학원) ;
  • 김형섭 (포항공과대학교 신소재공학과)
  • Received : 2013.08.13
  • Accepted : 2013.08.27
  • Published : 2013.08.28

Abstract

Stress-strain curves are fundamental properties to study characteristics of materials. Flow stress curves of the powder materials are obtained by indirect testing methods, such as tensile test with the bulk materials and powder compaction test, because it is hard to measure the stress-strain curves of the powder materials using conventional uniaxial tensile test due to the limitation of the size and shape of the specimen. Instrumented nanoindentation can measure mechanical properties of very small region from several nanometers to several micrometers, so nanoindentation technique is suitable to obtain the stress-strain curve of the powder materials. In this study, a novel technique to obtain the stress-strain curves using the combination of instrumented nanoindentation and finite element method was introduced and the flow stress curves of Fe powder were measured. Then obtained stress-strain curves were verified by the comparison of the experimental results and the FEA results for powder compaction test.

Keywords

References

  1. W. C. Oliver and G. M. Pharr: J. Mater. Res., 7 (1992) 1564. https://doi.org/10.1557/JMR.1992.1564
  2. W. C. Oliver and G. M. Pharr: J. Mater. Res., 19 (2004) 3. https://doi.org/10.1557/jmr.2004.19.1.3
  3. B. W. Lee, Y. Choi, Y.-H. Lee, J.-Y. Kim and D. Kwon: Mat. Res. Soc. Symp., 795 (2004) 345.
  4. K. D. Bouzakis, N. Michailidis and G. Erkens: Surf. Coat. Tech., 142-144 (2001) 102. https://doi.org/10.1016/S0257-8972(01)01275-0
  5. J. Dean, J. M. Wheeler and T. W. Clyne: Acta Mater., 58 (2010) 3613. https://doi.org/10.1016/j.actamat.2010.02.031
  6. K. K. Tho, S. Swaddiwudhipong, Z. S. Liu and K. Zeng: Mater Sci. Eng. A, 390 (2005) 202. https://doi.org/10.1016/j.msea.2004.08.037
  7. N. Chollacoop, M. Dao and S. Suresh: Acta Mater., 51 (2003) 3713. https://doi.org/10.1016/S1359-6454(03)00186-1
  8. H. S. Kim, Y. Estrin, E. Y. Gutmanas and C. K. Rhee: Mater Sci. Eng. A 307 (2001) 67. https://doi.org/10.1016/S0921-5093(00)01959-6
  9. S. M. Doraivelu, H. L. Gegel, J. S. Gunasekera, J. C. Malas, J. T. Morgan and J. F. Thomas: Powder Metall., 35 (1992) 275. https://doi.org/10.1179/pom.1992.35.4.275
  10. D. N. Lee and H. S. Kim: Powder Metall., 35 (1992) 275. https://doi.org/10.1179/pom.1992.35.4.275
  11. H. S. Kim and S.-J. Kim: J. Korean Powder Metall. Inst. 3 (1996) 104.
  12. Y. Estrin and H. Mecking: Acta Metall., 32 (1984) 57. https://doi.org/10.1016/0001-6160(84)90202-5
  13. D. J. Lee, E. Y. Yoon, H. N. Kim, H.-S. Kang, E. S. Kim and H. S. Kim: J. Korean Powder Metall. Inst., 18 (2011) 406. https://doi.org/10.4150/KPMI.2011.18.5.406