• 제목/요약/키워드: Uniaxial Tensile Test

Search Result 230, Processing Time 0.023 seconds

Relation Between Uniaxial Tensile Test And Wear in Steels (강재의 단축인장 시험과 마모와의 관계)

  • 오흥국
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.4
    • /
    • pp.25-33
    • /
    • 2000
  • The reorientations of the atoms by frictional shear deformation at the surface induce cracks at the boundary of the grain. The cracks grow and propagate in regions where the hydrostatic component of stress is least compressive because the compressive component restores the cracks by three-dimensional crystallizing $\pi$-bondings. The materials with Lder's band have very small amount of wear at the initial state. It suggests that initial frictional shear deformation be consumed to the formation of the Lder's band. The average wear amounts of the materials increase very steeply as the øu the stress-strain ratio at the ultimate point, decreases.

  • PDF

Brazilian Test of Concrete Specimens Subjected to Different Loading Geometries: Review and New Insights

  • Garcia, Victor J.;Marquez, Carmen O.;Zuniga-Suarez, Alonso R.;Zuniga-Torres, Berenice C.;Villalta-Granda, Luis J.
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.2
    • /
    • pp.343-363
    • /
    • 2017
  • The objective of this work was finding out the most advisable testing conditions for an effective and robust characterization of the tensile strength (TS) of concrete disks. The independent variables were the loading geometry, the angle subtended by the contact area, disk diameter and thickness, maximum aggregate size, and the sample compression strength (CS). The effect of the independent variables was studied in a three groups of experiments using a factorial design with two levels and four factors. The likeliest location where failure beginning was calculated using the equations that account for the stress-strain field developed within the disk. The theoretical outcome shows that for failure beginning at the geometric center of the sample, it is necessary for the contact angle in the loading setup to be larger than or equal to a threshold value. Nevertheless, the measured indirect tensile strength must be adjusted to get a close estimate of the uniaxial TS of the material. The correction depends on the loading geometry, and we got their mathematical expression and cross-validated them with the reported in the literature. The experimental results show that a loading geometry with a curved contact area, uniform load distribution over the contact area, loads projected parallel to one another within the disk, and a contact angle bigger of $12^{\circ}$ is the most advisable and robust setup for implementation of BT on concrete disks. This work provides a description of the BT carries on concrete disks and put forward a characterization technique to study costly samples of cement based material that have been enabled to display new and improved properties with nanomaterials.

Study on the Physical Properties according to the Anisotropy of Granite (화강암의 이방성에 따른 물리적 특성 연구)

  • 박윤석;강추원
    • Explosives and Blasting
    • /
    • v.21 no.4
    • /
    • pp.23-35
    • /
    • 2003
  • This study is to clarify the comparative relationship and a mechanical anisotropy of rock on the subject of granite distributed in the Namwon area Uniaxial compressive and Brazilian strengths with respect to the horizontal and vertical axes of granite are shown the linear relation. In the case of the result of the p-wave velocity measurement. it is represented that the velocity of vortical direction is faster about 10 to 15% than other two horizontal directions. The difference between velocities is caused by a developmental pattern of microcracks distributed in rock. Moreover, this result is very consistent with the result investigated through thin sections. The proportion of uniaxial compression strength to Index of point load strength ($Is_{(50)}$) is 18~20 times in case of granite. Uniaxial compressive strength is relatively good relationship with point load strength, Schmidt hammer rebound value, and tensile strength point load strength of them is the best comparative relationship. It is indicated that point load test is the most useful tool to estimate uniaxial compressive strength, comparing with other experimental methods.

Tensile Behavior of Ultra-High Performance Concrete According to Combination of Fibers (섬유 조합에 따른 초고성능 콘크리트의 인장거동)

  • Choi, Jung-Il;Koh, Kyung-Taek;Lee, Bang-Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.49-56
    • /
    • 2015
  • Ultra-High Strength Concrete(UHPC) has ultra-high material performance including high strength and high flowability. On the other hand it is less ductile than high ductile fiber reinforced cementitious composite. This study investigated the effect of combination of steel fiber and micro fiber on the tensile behavior of UHPC. Four types of UHPC containing combination of steel fiber, polyethylene(PE), polyvinyl alcohol(PVA), and basalt fiber were designed. And then uniaxial tension tests were performed to evaluate the tensile behavior of UHPC according to combination of fibers. And density was measured to evaluate whether micro fiber induces unintentional high pore or not. From the test results, it was exhibited that PE fiber with high strength is effective to improve the tensile behavior of UHPC and basalt fiber is effective to increase the cracking and tensile strength of UHPC. Furthermore, it was also verified that micro fiber does not make high pore.

Experimental study on strength anisotrophy of basalt in Cheju usland (제주도 현무암의 강도이방성에 대한 실험적 연구)

  • Song, Young-Suk;Nam, Jung-Mann;Yun, Jung-Mann
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1057-1062
    • /
    • 2008
  • In order to investigate a strength anisotrophy of basalt in Cheju Island, rock samples of Pyosenri basalt, trachy-basalt and scoria were taken from Seoguipo-Si Seongsan-Eup area, and a series of uniaxial compressive strength test and Brazilian test were carried out. The strengths were decreased with increasing the moisture contents in rock sample by pore water. As the result of test considering the anisotropy of rock strength, the compressive strength in condition of failure occurred parallel to stratified layer is decreased about 12-26% more than that in condition of failure occurred inclined to stratified layer.

  • PDF

Study on Stress Transition Mechanism and Uniaxial Tensile Characteristics by Tensile Fractured Test of Clamping Part of Membrane Structures (막구조 정착부의 인장파단시험을 통한 신장특성 및 응력전달체계에 관한 연구)

  • Kim, Hee-Kyun;Jeon, Sang-Hyeon;Ha, Chang-Woo;Kim, Jae-Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.3
    • /
    • pp.91-98
    • /
    • 2020
  • For form stability of membrane structures, membrane material is required to be in tension. Therefore, in planning and maintenance management, the engineer should consider enough about introduction of stress during construction and re-introduction of stress after completion. Clamping part is an important portion with the function for introducing tension into membrane materials, and the function to transmit stress to boundary structures, such as steel frames. Then, the purpose of this research is to clarify stress condition and stress transfer mechanism including clamping part of membrane structures, and to grasp the changing tendency of membrane structures with the passage of time. In this research, following previous one, we perform well-balanced evaluation by conducting tensile fractured tests of clamping part's specimens, and by measuring individually the amount of displacement of not only overall specimen's length but membrane material and clamping part. Thereby, we consider the influence the difference in the hardness of edge rope and the difference in the direction of thread affect modification and fracture load.

Evaluation of mechanical properties of polylactic acid and photopolymer resin processed by 3D printer fused deposition modeling and digital light processing at cryogenic temperature

  • Richard G. Pascua;Gellieca Dullas;SangHeon Lee;Hyung-Seop Shin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.26 no.2
    • /
    • pp.19-23
    • /
    • 2024
  • 3D printing has the advantage of being able to process various types of parts by layering materials. In addition to these advantages, 3D printing technology allows models to be processed quickly without any special work that can be used in different fields to produce workpieces for various purposes and shapes. This paper deals to not only increase the utilization of 3D printing technology, but also to revitalize 3D printing technology in applications that require similar cryogenic environments. The goal of this study is to identify the mechanical properties of polylactic acid and photopolymer resin processed by Fused Deposition Modeling (FDM) and Digital Light Processing (DLP) respectively. The entire process is meticulously examined, starting from getting the thermal contraction using an extensometer. A uniaxial tensile test is employed, which enables to obtain the mechanical properties of the samples at both room temperature (RT) and cryogenic temperature of 77 K. As the results, photopolymer resin exhibited higher tensile properties than polylactic acid at RT. However, at cryogenic temperatures (77 K), the photopolymer resin became brittle and failure occurred due to thermal contraction, while polylactic acid demonstrated superior tensile properties. Therefore, polylactic acid is more suitable for lower temperatures.

A study on the strain rate sensitivity according to the temperature for steel sheets of an auto-body (차체용 강판의 온도에 따른 변형률 속도 민감도 연구)

  • Lee H. J.;Song J. H.;Cho S. S.;Kim S. B.;Huh H.;Park S. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.148-151
    • /
    • 2005
  • This paper is concerned with the thermo-mechanical behavior and temperature dependent strain rate sensitivity of steel sheet for an auto-body. In order to Identify the temperature dependent strain rate sensitivity of SPRC35R and SPRC45E, uniaxial tension tests are performed with the variation of the strain rates from 0.001/sec to 200/sec, and the variation of environmental temperatures from $-40^{\circ}C\;to\;200^{\circ}C$. The thermo-mechanical response at the quasi-static state is obtained with the static tensile test and at the intermediate strain rate is from the high speed tensile test. The experimental results show that the strain rate sensitivity increases at low temperature and it decreases at high temperature. It means that as the strain rate getting increasing, the variation of flow stress is more sensitive on the temperature. The results also indicates that the material properties of SPRC35R is more depend on the changes of strain rates and temperature than those of SPRC45E.

  • PDF

A Study on the Strain-Rate Sensitivity According to the Temperature for Steel Sheets of an Auto-Body (차체용 강판의 온도에 따른 변형률속도 민감도 연구)

  • Lee, H.J.;Song, J.H.;Cho, S.S.;Park, S.H.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.15 no.2 s.83
    • /
    • pp.132-137
    • /
    • 2006
  • This paper is concerned with the thermo-mechanical behavior including temperature dependent strain-rate sensitivity of steel sheet for an auto-body. In order to identify the temperature dependent strain-rate sensitivity of SPRC35R and SPRC45E, uniaxial tension tests are performed with the variation of the strain-rates from 0.001 /sec to 200 /sec at environmental temperatures varied from $-40^{\circ}C\;to\;200^{\circ}C$. The thermo-mechanical response at the quasi-static state is obtained with the static tensile test and at the intermediate strain-rate is from the high speed tensile test. Experimental results show that the strain-rate sensitivity increases at low temperature. It represents that as the strain-rate increases, the variation of flow stress becomes sensitive on the temperature. The results indicate that the flow stress of SPRC35R is more dependent on the changes of strain-rate and temperature than those of SPRC45E.

Effect of brittleness on the micromechanical damage and failure pattern of rock specimens

  • Imani, Mehrdad;Nejati, Hamid Reza;Goshtasbi, Kamran;Nazerigivi, Amin
    • Smart Structures and Systems
    • /
    • v.29 no.4
    • /
    • pp.535-547
    • /
    • 2022
  • Failure patterns of rock specimens represent valuable information about the mechanical properties and crack evolution mechanism of rock. Several kinds of research have been conducted regarding the failure mechanism of brittle material, however; the influence of brittleness on the failure mechanism of rock specimens has not been precisely considered. In the present study, experimental and numerical examinations have been made to evaluate the physical and mechanical phenomena associated with rock failure mechanisms through the uniaxial compression test. In the experimental part, Unconfined Compressive Strength (UCS) tests equipped with Acoustic Emission (AE) have been conducted on rock samples with three different brittleness. Then, the numerical models have been calibrated based on experimental test results for further investigation and comparing the micro-cracking process in experimental and numerical models. It can be perceived that the failure mode of specimens with high brittleness is tensile axial splitting, based on the experimental evidence of rock specimens with different brittleness. Also, the crack growth mechanism of the rock specimens with various brittleness using discrete element modeling in the numerical part suggested that the specimens with more brittleness contain more tensile fracture during the loading sequences.