• Title/Summary/Keyword: Uniaxial Strength

Search Result 823, Processing Time 0.032 seconds

A Study of Joining Method of BSCCO(2223) Tape (BSCCO(2223) 초전도 선재의 접합공정 연구)

  • 김정호;김중석;김태우;지붕기;주진호;나완수
    • Progress in Superconductivity and Cryogenics
    • /
    • v.1 no.2
    • /
    • pp.1-7
    • /
    • 1999
  • we evaluated the effects of joining process such as contact method. shape of joined area and pressure on the electrical and mechanical properties of Bi-2223 superconducting tape, Specifically. the current capacity of the jointed tape was measured as a function of uniaxial pressure. and the thermal shock, bonding strength and the thermal of the tape were evaluated and correlated to the microstructural evolution. It was observed that the current capacity was significanrly dependent on the uniaxial pressure The jointed tape, fabricated with a pressure of 1,000-1,600 Mpa. showed the highest value of current capacity results from improvements in core density, contacting area and grain alignment, ect. In addition, the strength of jointed tape was measured to be 86 Mpa, which is about 88% of the unjoined ape's strength. The irreversible strain($\varepsilon$irrev) for the jointed tape was measured to be 0.1%, smaller than that of unjoined tape ($\varepsilon$irrev= 0.3%). The decrease in the strength and irreversible strain for jointed tape is believed to be due to the irregular geometry/morphology of the transition area of the tape.

  • PDF

Constitutive property behavior of an ultra-high-performance concrete with and without steel fibers

  • Williams, E.M.;Graham, S.S.;Akers, S.A.;Reed, P.A.;Rushing, T.S.
    • Computers and Concrete
    • /
    • v.7 no.2
    • /
    • pp.191-202
    • /
    • 2010
  • A laboratory investigation was conducted to characterize the constitutive property behavior of Cor-Tuf, an ultra-high-performance composite concrete. Mechanical property tests (hydrostatic compression, unconfined compression (UC), triaxial compression (TXC), unconfined direct pull (DP), uniaxial strain, and uniaxial-strain-load/constant-volumetric-strain tests) were performed on specimens prepared from concrete mixtures with and without steel fibers. From the UC and TXC test results, compression failure surfaces were developed for both sets of specimens. Both failure surfaces exhibited a continuous increase in maximum principal stress difference with increasing confining stress. The DP tests results determined the unconfined tensile strengths of the two mixtures. The tensile strength of each mixture was less than the generally assumed tensile strength for conventional strength concrete, which is 10 percent of the unconfined compressive strength. Both concretes behaved similarly, but Cor-Tuf with steel fibers exhibited slightly greater strength with increased confining pressure, and Cor-Tuf without steel fibers displayed slightly greater compressibility.

Influence of pre-compression on crack propagation in steel fiber reinforced concrete

  • Abubakar, Abdulhameed U.;Akcaoglu, Tulin
    • Advances in concrete construction
    • /
    • v.11 no.3
    • /
    • pp.261-270
    • /
    • 2021
  • In this study, a new understanding is presented on the microcracking behavior of high strength concrete (HSC) with steel fiber addition having prior compressive loading history. Microcracking behavior at critical stress (σcr) region, using seven fiber addition volume of 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, and 2.0% was evaluated, at two aspect ratios (60 and 75). The specimens were loaded up to a specified compressive stress levels (0.70fc-0.96fc), and subsequently subjected to split tensile tests. This was followed by microscopic analyses afterwards. Four compressive stress levels as percentage of fc were selected according to the linearity end point based on stress-time (σ-t) diagram under uniaxial compression. It was seen that pre-compression has an effect on the linearity end point as well as fiber addition where it lies within 85-91% of fc. Tensile strength gain was observed in some cases with respect to the 'maiden' tensile strength as oppose to tensile strength loss due to the fiber addition with teething effect. Aggregate cracking was the dominant failure mode instead of bond cracks due to improved matrix quality. The presence of the steel fiber improved the extensive failure pattern of cracks where it changes from 'macrocracks' to a branched network of microcracks especially at higher fiber dosages. The applied pre-compression resulted in hardening effect, but the cracking process is similar to that in concrete without fiber addition.

Los Angeles Abrasion Test for Estimating Engineering Index on the Sedimentary Rocks of Kyeongsang Basin (퇴적암의 공학지수를 추정하기 위한 L. A. 마모율 시험)

  • Min, Tuk-Ki;Moon, Jong-Kyu;Lee, Sang-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.11
    • /
    • pp.15-26
    • /
    • 2007
  • Los Angeles abrasion loss test has usally been applied to the quarry for the purpose of aggregate hardness estimation. 324 blocks from 25 sites of Kyeongsang basin samples of sedimentary rock were examined and tested in laboratary. This paper found that L. A. abrasion loss test is a good method to estimate engineering index such as uniaxial compressive strength, elastic modulus, indirect tensile strength, point load strength index, Schmidt hammer rebound value of sedimentary rocks with high correlation factor. Engineers will prefer L. A. abrasion loss test to the other one for design and construction as this method is quick and easy.

The Characteristic of Strength for a Lime Stone in Donghae Area and Harden Cement Milk of Super Injection Grouting (동해 석회암과 SIG 고결체의 강도특성)

  • Park, Young-Ho;Kim, Nak-Young;Hong, Sa-Myun;Yook, Jeong-Hoon;Kim, Ki-Seog
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.137-145
    • /
    • 2004
  • Limestone zone in korea have been distributed to diagonal line so that it is wide from the Gangwondo to the Jeonlanamdo. The limestone cavity and fractured zone were formed by chemical weathering. Limestone cavity and fractured zone was reinforced with cemented milk(w/c=60%)by high pressure jet grouting by tripple -pipe to establish bridge foundation on the ground condition like limestone cavity. To analyze property of limestone and solid of cement milk(w/c=65%), mixed solid of cement, core NX size in the limestone cavity and fractured zone and compressive strength. Seismic tomograpy exploration was pcrforn1cd to analyze deformation modulus of limestone. The analysis suggests that deformation modulus of limestone has effect on uniaxial compressive strength, seismic velocity, seismic elasticity modulus. Average static elasticity modulus of limestone is $5.08{\times}10^5kgf/cm^2$, cement and coal mixed solid is $0.25{\times}10^5kgf/cm^2$, $0.095{\times}10^5kgf/cm^2$. Average seismic velocity of limestone is 5.240m/sec, cement and coal mixed solid is 2,211.3m/sec, 1,447.5m/sec. Average uniaxial compressive strength of limestone was $1,221.3kgf/cm^2$ and limestone specimen mixed with cement milk and solid of cement milk mixed with coal were $125.22kgf/cm^2$, $35kgf/cm^2$ each other. Average friction angle of limestone was $49.14^{\circ}$ and limestone specimen mixed with cement milk and solid of cement milk mixed with coal were $38.39^{\circ}, 25.83^{\circ}$ each other. Average cohesion of limestone was $137.7kgf/cm^2$ and limestone specimen mixed with cement milk and solid of cement milk mixed with coal were $23.5kgf/cm^2$, $15.5kgf/cm^2$ each other. Average deformation modulus of limestone was $2.84{\times}10^5kgf/cm^2$ and limestone specimen mixed with cement milk and solid of cement milk mixed with coal were $0.4{\times}10^5kgf/cm^2, 0.12{\times}10^5kgf/cm^2$ each other. It was analyzed that the elasticity and uniaxial compressive strength, seismic velocity of solid of cement milk mixed limestone pieces and coal had an highly interrelation regardless of existence of limestones pieces and coal but it had shown that limestones had an lower interrelation. In case of field seismic velocity and deformation of limestone, SIC solid of cement milk mixed with coal and limestone pieces had an highly interrelation.

  • PDF

Calculating the Uniaxial Compressive Strength of Granite from Gangwon Province using Linear Regression Analysis (선형회귀분석을 적용한 강원도 지역 화강암의 일축압축강도 산정)

  • Lee, Moon-Se;Kim, Man-Il;Baek, Jong-Nam;Han, Bong-Koo
    • The Journal of Engineering Geology
    • /
    • v.21 no.4
    • /
    • pp.361-367
    • /
    • 2011
  • The uniaxial compressive strength (UCS) is an important factor in the design and construction of surface and underground structures. However, the method employed to measure UCS is time consuming and expensive to apply in the field. Therefore, we developed a model to estimate UCS based on a few properties using linear regression analysis, which is a statistical method. To develop the model, valid factors from the test results were selected from a correlation analysis using a statistical program, and the model was formulated by linear regression based on the relationships among factors. UCS estimates derived from the model were compared with the results of UCS tests, to assess the reliability of the model. The relationship between rock properties and UCS indicates that the factors with the greatest influence on UCS are point load strength and shape facto r. The UCS values obtained using the model are in good agreement with the results of the UCS test. Therefore, the developed model may be used to estimate the UCS of rocks in regions with similar conditions to those of the present study area.

A Study on the Field Application of Ground Stabilizer using Circulating Resource for Improvement of Soft Ground in Saemangeum Area (새만금 지역의 연약지반 개량을 위한 순환자원 활용 지반안정재의 현장적용에 관한 연구)

  • Seo, Se-Gwan;Kim, You-Seong;Cho, Dae-sung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.1
    • /
    • pp.103-110
    • /
    • 2020
  • The DMM (Deep mixing method) is a construction method in which an improved pile is installed in the soft ground by excavation ground using an auger and then mixing ground stabilizer with soil. Improved pile installed in the soft ground by the DMM may have different compressive strength depending on the properties and characteristics of the soil. In the previous study, laboratory tests were performed on the ground stabilizer for the DMM developed by using the ash of the circulating fluidized bed boiler as a stimulator for alkali activation of the blast furnace slag. And the test results were analyzed to derive the correlation between the unit weight of binder (γB) and the uniaxial compressive strength (qu). In this study, comparative reviews were conducted on the correlations derived from the same laboratory tests on soil material collected from the Saemangeum area and the stability of the site was evaluated by analyzing the test results performed at the site. As a result, the clay collected from the Saemangeum area satisfies the correlation between the unit weight of binder (γB) and the uniaxial compressive strength (qu) derived from the previous study. And the result of the test at the field showed a higher uniaxial compressive strength than the standard strength at the field, indicating excellent stability.

Experimental observation and realistic modeling of initiation and propagation of the rock fracture by acoustic emission

  • Wang, Shu-Hong;Lee, Chung-In;Jeon, Seok-Won;Lee, Hee-Kwang;Tang, Chun-An
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2006.03a
    • /
    • pp.79-93
    • /
    • 2006
  • It is well known that acoustic emission (AE) is indicator of rock fracturing or damage as rock is brought to failure under the uniaxial compressive loads. In this paper, an experimental study on the source location of acoustic emission on the cylindrical specimens of granite under uniaxial compression test was made. The AE source location was made by measuring the six channel AE data. Comparing to this experiment, the numerical method is applied to model the initiation and propagation of fracture by AE using a numerical code, RFPA (Realistic Failure Process Analysis). This code incorporates the mesoscopic heterogeneity in Young's modulus and rock strength characteristic of rock masses. In the numerical models, values of Young's modulus and rock strength are realized according to a Weibull distribution in which the distribution parameters represent the level of heterogeneity of the medium. The results of the simulations show that RFPA can be used not only to produce acoustic emission similar to those measurements in our experiments, but also to predict fracturing patterns under uniaxial loading condition.

  • PDF

An Experimental Study on Filling Material for Bored Pile Using High Calcium Ash (고칼슘 연소재를 이용한 매입말뚝의 주면고정액에 관한 실험적 연구)

  • Song, Sang-Hwon;Lim, Yang-Hyun;Seo, Se-Gwan;Cho, Dae-Sung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.13-20
    • /
    • 2017
  • In this study, laboratory tests were performed to evaluate for new filling materials (ZA-Soil) for bored pile that were developed using by high calcium ash. As a result of laboratory test, the uniaxial compression strength of 2 types of ZA-Soil are shown 68.0% and 64.6% compared to ordinary portland cement. And it have a suitable flowability and environmental stability. Also, after 28days, uniaxial compression strength of material mixed with soil and high strength filling material (ZA-Soil) for bored pile is 1.10-1.23 times bigger than material mixed with ordinary portland cement.

Damage constitutive model of brittle rock considering the compaction of crack

  • Gu, Qingheng;Ning, Jianguo;Tan, Yunliang;Liu, Xuesheng;Ma, Qing;Xu, Qiang
    • Geomechanics and Engineering
    • /
    • v.15 no.5
    • /
    • pp.1081-1089
    • /
    • 2018
  • The deformation and strength of brittle rocks are significantly influenced by the crack closure behavior. The relationship between the strength and deformation of rocks under uniaxial loading is the foundation for design and assessment of such scenarios. The concept of relative crack closure strain was proposed to describe the influence of the crack closure behavior on the deformation and strength of rocks. Considering the crack compaction effect, a new damage constitutive model was developed based on accumulated AE counts. First, a damage variable based on the accumulated AE counts was introduced, and the damage evolution equations for the four types of brittle rocks were then derived. Second, a compaction coefficient was proposed to describe the compaction degree and a correction factor was proposed to correct the error in the effective elastic modulus instead of the elastic modulus of the rock without new damage. Finally, the compaction coefficient and correction factor were used to modify the damage constitutive model obtained using the Lemaitre strain equivalence hypothesis. The fitted results of the models were then compared with the experimental data. The results showed that the uniaxial compressive strength and effective elastic modulus decrease with an increase in the relative crack closure strain. The values of the damage variables increase exponentially with strains. The modified damage constitutive equation can be used to more accurately describe the compressive deformation (particularly the compaction stage) of the four types of brittle rocks, with a coefficient of determination greater than 0.9.