• Title/Summary/Keyword: Uniaxial Compression Test

Search Result 282, Processing Time 0.022 seconds

종이의 단축압축 표준시험법 개발

  • Kim, Hyoung-Jin;Um, Gi-Jeung;Lee, Tai-Ju;Ko, Seung-Tae;Yoo, Yeong-Jeong
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2007.11a
    • /
    • pp.325-330
    • /
    • 2007
  • Uniaxial tensile test are generally much simpler than uniaxial compressive test. Uniaxial compressive test is experimentally more difficult because of the low buckling resistance of a sheet of paper. In order to avoid buckling, many researchers have applied various lateral restraint techniques to investigate paper uniaxial compression behavior. Adding unnecessary force to inhibit compressive deformation of the sheet is unwanted, but sufficient force must be used to inhibit buckling. This study has been carried out to develop new uniaxial compressive standard test method without exerting unnecessary force to paper specimen to prevent buckling.

  • PDF

Numerical Simulation of Radial Strain Controlled Uniaxial and Triaxial Compression Test of Rock Using Bonded Particle Model (입자결합모델을 이용한 횡방향 변형률 제어 하에서의 암석의 일축 및 삼축압축시험의 수치적 모사)

  • Lee, Chang-Soo;Kwon, Sang-Ki;Jeon, Seok-Won
    • Tunnel and Underground Space
    • /
    • v.21 no.3
    • /
    • pp.216-224
    • /
    • 2011
  • In this study, Class II behavior of rock failure process under uniaxial and biaxial compression has been numerically simulated using bonded particle model. Class II behavior of rock was simulated by radial strain controlled uniaxial and biaxial compression tests using a suggested method of ISRM. Micro-parameters used in the simulation were determined based on the laboratory uniaxial compression tests carried out at ${\"{A}}sp{\"{o}}$ Hard Rock Laboratory, Sweden. Class II behavior of ${\"{A}}sp{\"{o}}$ rock was effectively simulated using newly proposed numerical technique in this study, and the results of numerical simulations show good similarity with the complete stress-strain curves for Class II behavior obtained from the laboratory tests.

Physical Properties of Excavated Rocks in Taegu Area (대구지역 굴착암석의 물리적 특성)

  • 이상호;차완용;김영수;이재호
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.265-270
    • /
    • 1999
  • At this study, we investigated the chemical component and the mineral granular composition of sedimentary rock and others where were distributed in Taegu area and compared correlations with each data through the various physicla and mechanical characteristic test. As the result, d and E, they are kinds of granite, which contain much albite than others were proved to be strong by mechanical tests and the correlation moduli were proved to be more than 0.8 except P wave velocity-Poisson's ration relation when examined Elastic moduluous -Poisson's ration, P, wave velocity-Uniaxial compression strength, Elastic modulous -Uniaxial compression strength and Uniaxial compression strength-Poisson's ration correlation function graph.

  • PDF

A Yield Function for Sintered Porous Metals (소결분말금속의 항복함수)

  • 박종진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1115-1122
    • /
    • 1993
  • Several yield criteria for porous materials are compared with each other, defining the apparent yield stress as the yield stress of the porous material in simple compression. It was found that the plastic Poisson's ratio is the parameter needed to define the yield criterion, rather than the relative density. The plastic Poisson's ratio is regarded as a material characteristic that is obtained from a simple compression test. A new form of yield criterion was suggested, and it was applied to hydrostatic compression as well as uniaxial strain compression of sintered Al-2024 powder. The crossover point in the mean stress vs volume change curves of the processes was predicted. It is presented that the flow stress of the fully densed material can be obtained from that of the porous material using relations obtained from the yield criterion.

Experimental Study on Unconfined Compression Strength and Split Tensile Strength Properties in relation to Freezing Temperature and Loading Rate of Frozen Soil (동결 온도와 재하속도에 따른 동결토의 일축압축 및 쪼갬인장 강도특성)

  • Seo, Young-Kyo;Choi, Heon-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.19-26
    • /
    • 2012
  • Recently the world has been suffering from difficulties related to the demand and supply of energy due to the democratic movements sweeping across the Middle East. Consequently, many have turned their attention to never-developed extreme regions such as the polar lands or deep sea, which contain many underground resources. This research investigated the strength and initial elastic modulus values of eternally frozen ground through a uniaxial compression test and indirect tensile test using frozen artificial soil specimens. To ensure accurate test results, a sandymud mixture of standard Jumunjin sand and kaolinite (20% in weight) was used for the specimens in these laboratory tests. Specimen were prepared by varying the water content ratio (7%, 15%, and 20%). Then, the variation in the strength value, depending on the water content, was observed. This research also established three kinds of environments under freezing temperatures of $-5^{\circ}C$, $-10^{\circ}C$, and $-15^{\circ}C$. Then, the variation in the strength value was observed, depending on the freezing environment. In addition, the tests divided the loading rate into 6 phases and observed the variation in the stress-strain ratio, depending on the loading rate. The test data showed that a lower freezing temperature resulted in a larger strength value. An increase in the ice content in the specimen with the increase in the water content ratio influenced the strength value of the specimen. A faster load rate had a greater influence on the uniaxial compression and indirect tensile strengths of a frozen specimen and produced a different strength engineering property through the initial tangential modulus of elasticity. Finally, the long-term strength under a constant water content ratio and freezing temperature was checked by producing stress-strain ratio curves depending on the loading rate.

High Temperature Deformation Behavior of Ti-Al Intermetallic Compound and Orientation Distribution of Lamellae Structure (Ti-Al금속간화합물의고온변형거동및라멜라조직의결정방위분포)

  • Park Kyu-Seop;Kang Chang-Yong;Lee Keun-Jin;Chung Han-Shik;Jung Young-Guan;Fukutomi Hiroshi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.162-169
    • /
    • 2004
  • High temperature uniaxial compression tests in the alpha single phase region were carried out on the Ti -43mo1%Al intermetallic compound, in order to obtain oriented lamellar microstructure. The compression deformation temperatures and strain rates are from 1573k to 1623k and 1.0x10$^{-4}$ s to 5.0x10$^{-3}$ s, respectively. Fully lamellar microstructure was observed after the uniaxial compression deformation in a single phase region followed by cooling to room temperature. Lamellar colony diameter depended on strain rates and test temperatures. The diameter varied between 8601m and 300fm. Stress-strain curve showed a work softening and the size of lamellar colony diameter varied depending on peak stresses. This shows the occurrence of dynamic recrystallization. Texture measurements after the uniaxial compression deformation, showed the development of fiber during dynamic recrystallization. It is seen that the area for the maximum pole density existed in 35 degrees away from the compression plane. The texture sharpens with a decrease in strain rate

The Strength Properties of Permeable Hot Mix Asphalt for Surface Course (배수성 아스팔트 표층용 혼합물의 강도특성)

  • Lee, Kwan-Ho;Ham, Sang-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.7
    • /
    • pp.3296-3301
    • /
    • 2011
  • The Porous pavement gains popularity because of several benefits. It is to minimize hydro-planning condition, spraying condition, and splash to increase friction resistance, and decrease noise. Also, other studies showed that it is important to have appropriate porosity to reduce noise and water flush. The purpose of this study is an evaluation on the mechanical properties of asphalt pavements for surface course. In this study the specimen was manufactured using the Gyratory compactor in order to compact the strengthened surface course that involved the two-layer pavement. This study is conducted by using Marshall stability test(KS F 2377), Impact resonance test, Schmidt hammer test(KS F 2730), and the Uniaxial compression test(KS F 2314). Using the Uniaxial compression test and Schmidt hammer test, the values of compressive strength and bearing capacity were measured, and the modulus of elasticity for each specimen was respectively measured using the Uniaxial compression test, Impact Resonance test.

The Variation of Sedimentary Rock Strength due to Weathering (풍화에 따른 퇴적암의 강도 변화)

  • 배우석;이봉직;오세욱;이종규
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.1
    • /
    • pp.89-93
    • /
    • 2003
  • The failure of rock slopes were influenced by weathering, which causes change in the shear strength. The weathering is also directly related to slaking and swelling characteristics. In the paper, the core of diameter loom was obtained by digging on rock slope of Kong-ju in Korea and then EDX(Energy Dispersive X-ray spectrometer) analysis was carried out to verified element of chief rock-forming minerals. Uniaxial compression tests, slaking tests, and point load test are performed to study engineering characteristics of conglomerate and red shale. As a results of slaking test, slaking index of conglomerate indicate range of 85.11-99.58 and shale indicate 58.37-99.23. Therefore, it is recognized that the resistance of shale to weathering decreases in shallow depth and it greatly influences the strength of rock. The result of uniaxial compression test and Point load test show that the strength of sedimentary such as conglomerate and red shale has an influence on both weathering and saturation.

Characteristics of Bearing Capacity of Soft Ground Reinforced by Vertical Mat (연직 매트로 보강된 연약지반의 지지력 특성)

  • Shin, Eun-Chul;Lee, Gil-Ho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.6
    • /
    • pp.83-90
    • /
    • 2012
  • Generally, the effect of the cement deep mixing method on the improvement of clay ground is far greater than the effect of physical improvement. Although it leads to great improvement strength in the initial stage, there are not many constructional precedents in Korea and it is hard to manage quality according to the cement-clay mixing method. In order to figure out the strength characteristics according to the mixing ratio of cement, sand, and clay and the improvement characteristics of weak ground according to the forms of the specimens to be improved, marine clay was used in this study to conduct the uniaxial compression test and soil bin model test. The test piece specimens for the uniaxial compression test were mixed with sand in a fixed ratio with the criterion of the water cement ratio. The cement was mixed with clay in the ratios of 10%, 20%, 30%, and 40% to the clay weight. The moisture content of the soil ground was made in the ratios of 40%, 60%, and 80%. The test piece specimens went through curing by moistening for 7, 14, and 28 days and underwent the uniaxial compression test according to the curing period. For the bearing test, the soil bin models were made and the ground improved in the Mat type was formed. After that, the bearing strength was compared in this study according to the improvement ratio and analyzed the intervening effect between the walls of the improved specimens.

Fundamental Properties of Controlled Low Strength Materials Mixed Blast Furnace Slag and Sewage Sludge (고로슬래그미분말 및 하수슬러지를 혼입한 시멘트계 저강도 재료의 기초적 물성)

  • Kim, Dong-Hun;Park, Shin;Lim, Nam-Gi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.53-54
    • /
    • 2015
  • As the result of uniaxial compression strength test on the CLMS mixing BFS and SS with BFS 4000, it required to determine the desired strength through increasing unit quantity of cement in mixing process because of dramatic strength deterioration of strength according to increasing replacing rate. In this study's result, regardless of differences in fine aggregates used, in order to get uniaxial compression strength in the scope exceeding criteria of minimum strength for applying to the field, the most reasonable combination was to mix replacing BFS with fineness of 6000 in 30%. For the CLMS mixing BFS and SS, in order to improve flow ability by securing quantity of minimum unit and to repress bleeding rate with securing uniaxial compress strength considering the field applicability, regardless of differences in fine aggregates used, to mix BFS over 6000 in 30% was most effective.

  • PDF