• Title/Summary/Keyword: Uniaxial Compression Strength

Search Result 318, Processing Time 0.022 seconds

Characteristics of Creep Deformation Behavior of Granite under Uniaxial Compression (단축압축하중을 받는 대전 화강암의 크립 변형거동 특성에 관한 연구)

  • 홍지수;전석원
    • Tunnel and Underground Space
    • /
    • v.14 no.1
    • /
    • pp.69-77
    • /
    • 2004
  • Investigation of the time-dependent behavior of rock and the associated mechanisms are of key interest in long-term stability analysis of many engineering applications. In this study, creep tests were performed on Daejeon granite samples of 25.4mm diameter under uniaxial compression at varying stress levels. The effect of moisture was investigated by testing both air-dried and fully water-saturated samples. The creep behavior of Daejeon granite exhibited three distinctive stages of primary, secondary and tertiary creep. The ultimate strength of granite under a constant stress decreased considerably with time. Saturation and immersion of the test specimen in water markedly increased the total creep strain as well as the secondary creep rate. The experimental creep curves are fitted to Burger's model as well as two other empirical models suggested by previous researchers. A number of the parameters determined for each model are dependent on stress and influenced by the presence of water. Based on the experimental results, an empirical relation between the applied stress and the time-dependent strain is established separately for each air-dried and fully water-saturated Daejeon granite.

Axial Compression of Stub Columns for Concrete-filled Square Steel Tubes (일축 압축력을 받는 콘크리트충전 각형강관 단주의 구조적 거동)

  • Yoo, Yeong-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.617-624
    • /
    • 2021
  • Concrete-filled steel tubular columns can improve the strength and deformation capacity of structures, thereby enabling the development of efficient structures. The Korean design standard (KDS41) regarding concrete-filled steel tubular structures, established by the architectural institute of Korea in 2005, was revised in 2009 and 2016. The objective was to understand the compressive strengths and deformation capacity of stub columns for concrete-filled square steel tubes under uniaxial compression and validate the KDS41's standard code for necessary corrections. Experiments were conducted on 26 specimens with parameters, such as the width-thickness ratio of cold-formed square tubes. The following values of the stub columns for concrete-filled square steel tubes were obtained: compressive strengths, relationship between the axial load and axial displacement, and failure modes. An analysis of these results enabled an understanding of the concrete-filled effect and the influence of the wide-thickness ratio. The compressive strengths of filled concrete saw a 9% increase compared to a state of uniaxial stress, which must be noted in a future edition of KDS41. After benchmarking the results regarding square steel tubes generated by cold forming to the guidelines provided by the KDS41, the KDS41's value of 2.26 for the limiting width-to-thickness ratio for the compact section was found to be inflated. With a safety concern, this paper proposes a more conservative value of 1.35.

Evaluation of mechanical properties of KURT granite under simulated coupled condition of a geological repository (복합 처분환경 모사조건에서의 KURT 화강암의 역학적 물성 변화 평가)

  • Park, Seunghun;Kim, Jin-Seop;Kim, Geon Young;Kwon, Sangki
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.4
    • /
    • pp.501-518
    • /
    • 2019
  • The rock properties measured under in-situ geological condition can be used to increase the reliability in numerical simulations with regard to the long-term performance of a high-level waste repository. In this study, the change in mechanical properties of KURT (Korea atomic energy research institute Underground Research Tunnel) granite was evaluated under the simulated THM (Thermo-Hydro-Mechanical) coupled condition due to a deep geological formation in the disposal repository. The rock properties such as uniaxial compression strength, indirect tensile strength, elastic modulus and Poisson's ratio were measured under the coupled test conditions (M, HM, TM, THM). It was found that the mechanical properties of KURT granite is more susceptible to the change in saturation rather than temperature within the test condition of this study. The changes in uniaxial compression strength and indirect tensile strength from the rock samples of dried or saturated conditions showed the maximum relative error of about 20% and 13% respectively under the constant temperature condition. Therefore, it is necessary to use the material properties of rock measured under the coupled THM condition as input parameters for the numerical simulation of long-term performance assessment of a disposal repository

The Optimum Mixture Condition for Stabilization of Songdo Silty Clay (송도 지역 실트질 점성토 고화처리를 위한 최적 배합 조건)

  • Kim, Jun-Young;Jang, Eui-Ryong;Chung, Choong-Ki;Jang, Soon-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.5
    • /
    • pp.5-15
    • /
    • 2011
  • Recent increase of large scale construction near costal area has also increased the application of soft ground treatment. As a result, solidification with cement and lime which increases stability and durability of soils, is frequently used for surface layer stabilization in soft ground site. While stabilization of very soft clay with high plasticity and compressibility has widely been studied, studies on silty clay with low plasticity and compressibility are relatively rare. In this study, after stabilizing low plasticity silty clay of Songdo area with cement and lime under various water contents, mixing ratio, and curing time, uniaxial compression test and plate load test were performed. Strength properties from both tests were considerably consistent. And trackability of construction equipment on the treated surface layer of dredged land was estimated. Finally, optimum mixing condition for Songdo silty clay was proposed.

Crack Propagation and Coalescence in Yeosan Marble under Uniaxial Compression (단축압축 하에서 대리석의 균열전파 및 결합)

  • 박남수;전석원
    • Tunnel and Underground Space
    • /
    • v.11 no.3
    • /
    • pp.217-224
    • /
    • 2001
  • Rock masses are usually discontinuous in nature due to various geological processes and contain rock joints and bridges. Crack propagation and coalescence processes in rock bridge mainly cause rock failures in slopes, foundations, and tunnels. In this study, we focused on the crack initiation, propagation and coalescence process of rock materials containing two pre-existing open cracks arranged in different geometries. Specimens of 120${\times}$60${\times}$25 mm in size, which were made of Yeoman Marble, were prepared. In the specimens, two artificial cracks were cut with pre-existing crack angle ${\alpha}$, bridge angle ${\beta}$, pre-existing crack length 2c and bridge length 2b. Wing crack initiation stress, wing crack propagation angle, and crack coalescence stress were measured and crack initiation, propagation and coalescence processes were observed during uniaxial compression. Crack coalescence types were classified and analytical study using Ashby and Hallam model (1986) was performed to be compared with the experimental results.

  • PDF

Interaction and mechanical effect of materials interface of contact zone composite samples: Uniaxial compression experimental and numerical studies

  • Wang, Weiqi;Ye, Yicheng;Wang, Qihu;Luo, Binyu;Wang, Jie;Liu, Yang
    • Geomechanics and Engineering
    • /
    • v.21 no.6
    • /
    • pp.571-582
    • /
    • 2020
  • Aiming at the mechanical and structural characteristics of the contact zone composite rock, the uniaxial compression tests and numerical studies were carried out. The interaction forms and formation mechanisms at the contact interfaces of different materials were analyzed to reveal the effect of interaction on the mechanical behavior of composite samples. The research demonstrated that there are three types of interactions between the two materials at the contact interface: constraint parallel to the interface, squeezing perpendicular to the interface, and shear stress on the interface. The interaction is mainly affected by the differences in Poisson's ratio and elastic modulus of the two materials, stronger interface adhesion, and larger interface inclination. The interaction weakens the strength and stiffness of the composite sample, and the magnitude of weakening is positively correlated with the degree of difference in the mechanical properties of the materials. The tensile-shear stress derived from the interaction results in the axial tensile fracture perpendicular to the interface and the interfacial shear facture. Tensile cracks in stronger material will propagation into the weaker material through the bonded interface. The larger inclination angle of the interface enhances the effect of composite tensile/shear failure on the overall sample.

Mechanical properties and failure mechanisms of sandstone with pyrite concretions under uniaxial compression

  • Chen, Shao J.;Ren, Meng Z.;Wang, Feng;Yin, Da W.;Chen, Deng H.
    • Geomechanics and Engineering
    • /
    • v.22 no.5
    • /
    • pp.385-396
    • /
    • 2020
  • A uniaxial compression test was performed to analyse the mechanical properties and macroscale and mesoscale failure mechanisms of sandstone with pyrite concretions. The effect of the pyrite concretions on the evolution of macroscale cracks in the sandstone was further investigated through numerical simulations with Particle Flow Code in 2D (PFC2D). The results revealed that pyrite concretions substantially influence the mechanical properties and macroscale and mesoscale failure characteristics of sandstone. During the initial loading stage, significant stress concentrations occurred around the edges of the pyrite concretion accompanied by the preferential generation of cracks. Meanwhile, the events and cumulative energy counts of the acoustic emission (AE) signal increased rapidly because of friction sliding between the concretion and sandstone matrix. As the axial stress increased, the degree of the stress concentration remained relatively unchanged around the edges of the concretions. The cracks continued growing rapidly around the edges of the concretions and gradually expanded toward the centre of the sample. During this stage, the AE events and cumulative energy counts increased quite slowly. As the axial stress approached the peak strength of the sandstone, the cracks that developed around the edges of the concretion started to merge with cracks that propagated at the top-left and bottom-right corners of the sample. This crack evolution ultimately resulted in the shear failure of the sandstone sample around the edges of the pyrite concretions.

Behavior of F shape non-persistent joint under experimental and numerical uniaxial compression test

  • Sarfarazi, Vahab;Asgari, Kaveh;Zarei, Meisam;Ghalam, Erfan Zarrin
    • Advances in concrete construction
    • /
    • v.13 no.2
    • /
    • pp.199-213
    • /
    • 2022
  • Experimental and discrete element approaches were used to examine the effects of F shape non-persistent joints on the failure behaviour of concrete under uniaxial compressive test. concrete specimens with dimensions of 200 cm×200 cm×50 cm were provided. Within the specimen, F shape non-persistent joint consisting three joints were provided. The large joint length was 6 cm, and the length of two small joints were 2 cm. Vertical distance between two small joints change from 1.5 cm to 4.5 cm with increment of 1.5 cm. In constant joint lengths, the angle of large joint change from 0° to 90° with increments of 30°. Totally 12 different models were tested under compression test. The axial load rate on the model was 0.05 mm/min. Concurrent with experimental tests, numerical simulation (Particle flow code in two dimension) were performed on the models containing F shape non-persistent joint. Distance between small joints and joint angles were similar to experimental one. the results indicated that the failure process was mostly governed by both of the Distance between small joints and joint angles. The axial loading rate on the model was 0.05 mm/min. The compressive strengths of the samples were related to the fracture pattern and failure mechanism of the discontinuities. Furthermore, it was shown that the compressive behaviour of discontinuities is related to the number of the induced tensile cracks which are increased by increasing the joint angle. In the first, there were only a few acoustic emission (AE) hits in the initial stage of loading, and then AE hits rapidly grow before the applied stress reached its peak. Furthermore, a large number of AE hits accompanied every stress drop. Finally, the failure pattern and failure strength are similar in both approaches i.e., the experimental testing and the numerical simulation approaches.

Engineering Characteristics of Mudeungsan Tuff and Ipseok-dae Columnar Joints (무등산응회암과 입석대 주상절리대의 공학적 특성)

  • Noh, Jeongdu;Jang, Heewon;Lim, Chaehun;Hwang, Namhyun;Kang, Seong-Seung
    • The Journal of Engineering Geology
    • /
    • v.30 no.2
    • /
    • pp.161-173
    • /
    • 2020
  • This study is to examine the engineering characteristics of colunmar joints in Mudeugsan National Park, a global geopark. For these purposes, physical and mechanical properties of Mudeungsan Tuff, evaluation for the weathering degree of columnar joints, and crack behavior monitoring in columnar joints were conducted. The physical properties of Mudeungsan tuff were 1.02% for the average porosity, 0.38% for the average absorption, 2.69 g/㎤ for the average specific gravity, and 4,948 m/s for the average elastic wave velocity. Its mechanical properties were 337 MPa for the average uniaxial compressive strength, 68 GPa for the average elastic modulus, 0.29 for the average Poisson's ratio, 41.3 MPa for the average cohesion strength, and 62.8° for the average friction angle. the average rebound Q-value of the silver Schmidt hammer for the three columnar joint blocks at the Ipseok-dae was shown as 49.3. when this value is converted into uniaxial compressive strength, it becomes 70.5 MPa, which is about 21% of the uniaxial compression strength of Mudeungsan tuff. In addition, according to the results of crack monitoring measurements for the three columnar joint blocks at the Ipseok-dae, the crack behavior is less than 1 mm, so it is believed that its behavior in Ipseak-dae columnar joints has hardly occured to date.

Estimation of Ripperbility in Rock Mass (암반의 굴착난이도 평가를 위한 제안)

  • 황영철;유병옥;김태수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.159-166
    • /
    • 1999
  • One of the most general methods that can evaluate the rippability is the seismic exploration. However, most field engineers have hardly used the seismic exploration. Instead of using the seismic exploration, they have usually used rock hammer and naked eyes to confirm the degree of rippability for soil, ripping rock and blasting rock. Therefore, to excavate the ground rationally, it is required to establish a quantitative criterion that can be used for distinguishing rippability. In this study, we find out the characteristics of rock strength through laboratory and field tests. The weathering condition of rock exposed to air due to excavation of soil layer and the variation of rock strength caused by weathering were investigated. A relationship between rock strength values that are obtained from uniaxial compression test, slaking durability test, point load test, schmidt hammer test and absorption ratio test is analyzed. The relationship is expressed in a form of equation by which we can evaluate the rock strengths obtained from simple laboratory and field tests. To evaluate rippability in a reasonable manner, a quantitative approach is proposed and a check list of rippability is developed based on the proposed methodology. It is recommended to modify the proposed method for evaluation of rippability in the field.

  • PDF