• Title/Summary/Keyword: Underwater sound source

Search Result 67, Processing Time 0.026 seconds

Direction and Location Estimating Algorithm for Sound Sources with Two Hydrophones in Underwater Environment (두 개의 하이드로폰을 이용한 수중 음원 방향 추정 및 위치 추정 알고리즘)

  • Shin, JaeWook;Song, Ju-Man;Lee, SeokYoung;Choi, Hyun-Taek;Park, PooGyeon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.8
    • /
    • pp.676-681
    • /
    • 2013
  • For underwater vehicles, the use of sensors such as cameras and laser scanners is limited by the difference in environment compared to robots designed to work on dry land. In underwater environments, if use is made of sound signals, valuable information can be obtained. The most important application is the localization of underwater sound sources. The estimated location of a sound source can be used to control underwater robots or submarines. Thus, the purpose of this research is to estimate the source's direction and location in a noisy underwater environment. The direction of the sound source is obtained using two hydrophones. Furthermore, if we assume that the robot or sound source is moving, the location of the sound source is estimated using more than two estimated directions. The feasibility of the developed algorithm is examined by experiments in a water tank and in the ocean.

Acoustic Field Analysis of Reverberant Water Tank using Acoustic Radiosity Method and Experimental Verification (음향라디오시티법을 이용한 잔향수조 음장 해석과 실험검증)

  • Kim, Kookhyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.5
    • /
    • pp.464-471
    • /
    • 2019
  • The acoustic power is a major acoustical characteristic of an underwater vehicle and could be measured in a reverberant water tank. In order to obtain accurate measurement results, the acoustic field formed by the sound source should be investigated quantitatively in the reverberant water tank. In this research, the acoustic field of a reverberant water tank containing an underwater sound source has been analyzed by using an acoustic radiosity method one of the numerical analysis methods suitable for the acoustic analysis of the highly diffused space. The source level of the underwater sound source and acoustical properties of the water tank input to the numerical analysis have been estimated by applying the reverberant tank plot method through a preliminary experiment result. The comparison of the numerical analysis result with that of the experiment has verified the accuracy of the acoustic radiosity method.

Positional Estimation of Underwater Sound Source Using Nearfield Acoustic Holography (근접장 음향 홀로그래피에 의한 수중 음원의 위치 추정)

  • Yoon Jong-Rak;Kim Won-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.166-170
    • /
    • 2005
  • This paper describes the experimental study for the position estimation method of underwater sound source using the Nearfield Acoustic Holography. The result confirms that it can be used in the identification of underwater noise sources. The sound sources in the experimental work consists of 2 spherical projectors and the near-Held sound pressure is measured in the hologram plane. From the cross-power spectra of the measured data, the complex sound pressures on the hologram plane is derived and its spatial transformation gives sound fields in a source region. The obtained sound fields in a source region showed that the position of each sound source and their relative source strength are exactly estimated. In conclusion, this technique can be applied for estimation of each source position and its relative strength contribution for the underwater multiple sound sources.

Study on Depth Estimation and Characteristic Analysis of Underwater Source Based on Deep-Sea Broadband Signal Modeling (심해역 광대역 신호 모델링 기반 수중 음원의 심도 추정 및 특성 분석 연구)

  • Sunhyo Kim;Hansoo Kim;Donhyug Kang;Sungho Cho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.535-543
    • /
    • 2024
  • Studies on estimating the underwater sound source localization using acoustic signal characteristics have mainly been conducted in shallow waters. Recently, technologies for stably and efficiently estimating the underwater sound sources localization using the underwater sound propagation characteristics of the Reliable Acoustic Path(RAP) in deep water areas are being studied. Underwater surveillance technology in deep sea areas is known to have the advantage of having low detection performance variability due to time-varying underwater environments and having a small shadow zone, making it easy to stably detect underwater sound sources and estimate location even from relatively long distance. In this study, we analyzed the sound propagation characteristics based on the actual marine environment in the deep sea of the Korean Peninsula and conducted a study to analyze the estimation performance of sound source depth using the broadband interference pattern of direct wave and sea surface reflected waves radiating from underwater sound sources.

Overview of anthropogenic underwater sound effects and sound exposure criteria on fishes (어류에 미치는 인위적인 수중소음 영향과 피해기준에 대한 고찰)

  • PARK, Jihyun;YOON, Jong-Rak
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.53 no.1
    • /
    • pp.19-40
    • /
    • 2017
  • A scientific and objective sound exposure criterion for underwater sound damage on fish has been required since there has been many disputes between an underwater sound maker and a fish damage receiver. The existing criteria are still incomplete scientifically owing to a degree of variability of underwater sounds, diversity of fish hearing sensitivity and damage types, etc. This study reviews existing studies on a hearing mechanism of fish species, manmade underwater sound characteristics and sound exposure assessment parameters, and recent sound exposure criteria. A governing equation for damage coverage estimation and damage coverage dependency on sound source level, ambient noise and transmission loss are also reviewed and interpreted based on sound exposure environments. The foreign and Korean (National Environmental Dispute Medication Commission) criteria are reviewed and compared based on scientific aspects. In addition, the deficit and limit of Korean criteria are presented. The objective of this study is to give a direction for related researches and legislation of sound exposure criteria on fish.

Experimental Study on Source Level Estimation Techniques of Underwater Sound Source in Reverberant Water Tank (잔향수조 내 수중음원의 음원레벨 추정기법에 관한 실험연구)

  • Kim, Kookhyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.358-363
    • /
    • 2019
  • The acoustic power is used as a primary index characterizing underwater sound sources and could be defined by its source level. The source level has been assessed using various experimental techniques such as the reverberation time method and reverberant tank plot method. While the reverberation time method requires reverberation time data extracted in a preliminary experiment in a reverberant water tank, the reverberant tank plot method only needs acoustic pressure data directly obtained at the reverberation water tank. In this research, these experimental techniques were studied in comparative experiments to estimate the source levels of underwater sources in a reverberant water tank. This paper summarizes the basic theories and procedures of these experimental techniques and presents the experimental results for an underwater source in a long cuboid water tank using each technique, along with a discussion.

Simple Estimation of Sound Source Directivity in Diffused Acoustic Field: Numerical Simulation (확산음향장에서의 음원 지향성 간이추정: 수치시뮬레이션)

  • Kim, Kookhyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.421-426
    • /
    • 2019
  • The directivity of an underwater sound source should be measured in an acoustically open field such as a calm sea or lake, or an anechoic water tank facility. However, technical difficulties arise when practically implementing this in open fields. Signal processing-based techniques such as a sound intensity method and near-field acoustic holography have been adopted to overcome the problem, but these are inefficient in terms of acquisition and maintenance costs. This study established a simple directivity estimation technique with data acquisition, filtering, and analysis tools. A numerical simulation based on an acoustic radiosity method showed that the technique is practicable for sound source directivity estimation in a diffused reverberant acoustic field like a reverberant water tank.

The Underwater Propagation of the Noise of Ship's Engine (기관소음의 수중전파에 관한 연구)

  • 박중희
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.16 no.2
    • /
    • pp.69-76
    • /
    • 1980
  • This paper describes the measurement of the underwater noises produced by the engine vibration around the engine room of stern trawler MIS Sae-Ba-Da(2275GT, 3,600 PS) and pole kner M/S Kwan-Ak-San (243 GT, 1000 PS) while the ship is stopping. The underwater noise pressure level was measured with the underwater level meter of which measuring range is 100 to 200 dB(re bLPa). A and B denotes the maximum pressure level measured at right beneath the bottom of the engine room, while the main engine of the Sae-Ba-Da revoluted at 750 and 500 rpm, respectively. C denotes that of the main engine of the Kwan-Ak-San revoluted at 350 rpm, and D that of the generator of the Sae-Ba-Da revoluted at 720 rpm. Thus A, B, C and D were set for the standard sound source for the experiment. The results obtained are as follows: 1. The noise Pressure level at A, B, C and D were 170.5,165,153 and 158dB, respectively. 2. When the check points distanted vertically 1, 10, 20, 30, 40, 50m from the sound source, the underwater noise presure levels were 170.5, 155, 148, 144 and 138 dB and the directional angle was 116\ulcorner in case of A. 3. The sound level attenuated at the rate of 20dB per 10" meters of the horizontal distance from the sound sources. 4. The frequency distribution of the noise was 100Hz to 10KHz and predominant frequency was 700 to 800Hzminant frequency was 700 to 800Hz

  • PDF

Underwater Acoustic Research Trends with Machine Learning: Passive SONAR Applications

  • Yang, Haesang;Lee, Keunhwa;Choo, Youngmin;Kim, Kookhyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.227-236
    • /
    • 2020
  • Underwater acoustics, which is the domain that addresses phenomena related to the generation, propagation, and reception of sound waves in water, has been applied mainly in the research on the use of sound navigation and ranging (SONAR) systems for underwater communication, target detection, investigation of marine resources and environment mapping, and measurement and analysis of sound sources in water. The main objective of remote sensing based on underwater acoustics is to indirectly acquire information on underwater targets of interest using acoustic data. Meanwhile, highly advanced data-driven machine-learning techniques are being used in various ways in the processes of acquiring information from acoustic data. The related theoretical background is introduced in the first part of this paper (Yang et al., 2020). This paper reviews machine-learning applications in passive SONAR signal-processing tasks including target detection/identification and localization.

A Study on The Range Estimation of Underwater Acoustic Source using FDOA and TDOA of Multipath Signals (다중경로 신호의 도달 주파수와 시간 차를 이용한 수중음원 거리 추정 연구)

  • Son, Yoon-Jun;Son, Gi-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.311-318
    • /
    • 2021
  • Underwater, signals are transmitted by sound waves. Sound waves are transmitted through a multipath, either directly or through reflection, due to the variety of underwater environmental characteristics. In such diverse and complex underwater environments, tests must be conducted to determine the extent of the hazard from the survivability and pitfalls of submarines by measuring the underwater radiated noise. Usually, the sound source level measurement of underwater radiated noise should be made within the closest point (CPA: Closest Point of Approach) ± a few meters between the measurement sensor and the submarine. In this study, FDOA and TDOA methods were proposed to estimate the underwater source range. A simulation based on the underwater channel model confirmed the performance of the proposed method.