References
- Allen, N., Hines, P.C., & Young, V.W. (2011). Performances of Human Listeners and an Automatic Aural Classifier in Discriminating between Sonar Target Echoes and Clutter. The Journal of the Acoustical Society of America, 130(3), 1287-1298. https://doi.org/10.1121/1.3614549
- Chakrabarty, S., & Habets, E.A. (2017). Broadband DOA Estimation Using Convolutional Neural Networks Trained with Noise Signals. Paper Presented at the 2017 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA). https://doi.org/10.1109/WASPAA.2017.8170010
- Chi, J., Li, X., Wang, H., Gao, D., & Gerstoft, P. (2019). Sound Source Ranging Using a Feed-forward Neural Network with Fitting-based Early Stopping. The Journal of the Acoustical Society of America, 146(3), EL258-EL264. https://doi.org/10.1121/1.5126115
- Choi, J., Choo, Y., & Lee, K. (2019). Acoustic Classification of Surface and Underwater Vessels in the Ocean Using Supervised Machine Learning. Sensors, 19(16), 3492. https://doi.org/10.3390/s19163492
- Conan, E., Bonnel, J., Chonavel, T., & Nicolas, B. (2016). Source Depth Discrimination with a Vertical Line Array. The Journal of the Acoustical Society of America, 140(5), EL434-EL440. https://doi.org/10.1121/1.4967506
- Conan, E., Bonnel, J., Nicolas, B., & Chonavel, T. (2017). Using the Trapped Energy Ratio for Source Depth Discrimination with a Horizontal Line Array: Theory and Experimental Results. The Journal of the Acoustical Society of America, 142(5), 2776-2786. https://doi.org/10.1121/1.5009449
- Das, A. (2017). Theoretical and Experimental Comparison of Off-grid Sparse Bayesian Direction-of-arrival Estimation Algorithms. IEEE Access, 5, 18075-18087. https://doi.org/10.1109/ACCESS.2017.2747153
- Das, A., & Sejnowski, T.J. (2017). Narrowband and Wideband Off-grid Direction-of-arrival Estimation via Sparse Bayesian Learning. IEEE Journal of Oceanic Engineering, 43(1), 108-118. https://doi.org/10.1109/JOE.2017.2660278
- Donoho, D.L. (2006). Compressed Sensing. IEEE Transactions on Information theory, 52(4), 1289-1306. https://doi.org/10.1109/TIT.2006.871582
- Edelmann, G.F., & Gaumond, C.F. (2011). Beamforming Using Compressive Sensing. The Journal of the Acoustical Society of America, 130(4), EL232-EL237. https://doi.org/10.1121/1.3632046
- Gemba, K.L., Nannuru, S., & Gerstoft, P. (2019). Robust Ocean Acoustic Localization with Sparse Bayesian Learning. IEEE Journal of Selected Topics in Signal Processing, 13(1), 49-60. https://doi.org/10.1109/JSTSP.2019.2900912
- Gerstoft, P., Mecklenbrauker, C.F., Xenaki, A., & Nannuru, S. (2016). Multisnapshot Sparse Bayesian Learning for DOA. IEEE Signal Processing Letters, 23(10), 1469-1473. https://doi.org/10.1109/LSP.2016.2598550
- Gerstoft, P., Nannuru, S., Mecklenbrauker, C.F., & Leus, G. (2019). DOA Estimation in Heteroscedastic Noise. Signal Processing, 161, 63-73. https://doi.org/10.1016/j.sigpro.2019.03.014
- Hemminger, T.L., & Pao, Y.-H. (1994). Detection and Classification of Underwater Acoustic Transients Using Neural Networks. IEEE Transactions on Neural Networks, 5(5), 712-718. https://doi.org/10.1109/72.317723
- Huang, Z., Xu, J., Gong, Z., Wang, H., & Yan, Y. (2018). Source Localization Using Deep Neural Networks in a Shallow Water Environment. The Journal of the Acoustical Society of America, 143(5), 2922-2932. https://doi.org/10.1121/1.5036725
- Jensen, F.B., Kuperman, W.A., Porter, M.B., & Schmidt, H. (2011). Computational Ocean Acoustics. Springer Science & Business Media.
- Ke, X., Yuan, F., & Cheng, E. (2018). Underwater Acoustic Target Recognition Based on Supervised Feature-Separation Algorithm. Sensors, 18(12), 4318. https://doi.org/10.3390/s18124318
- Komari Alaie, H., & Farsi, H. (2018). Passive Sonar Target Detection Using Statistical Classifier and Adaptive Threshold. Applied Sciences, 8(1), 61. https://doi.org/10.3390/app8010061
- Lefort, R., Real, G., & Dremeau A. (2017). Direct Regressions for Underwater Acoustic Source Localization in Fluctuating Oceans. Applied Acoustics, 116, 303-310. https://doi.org/10.1016/j.apacoust.2016.10.005
- Liang, G., Zhang, Y., Zhang, G., Feng, J., & Zheng, C. (2018). Depth Discrimination for Low-Frequency Sources Using a Horizontal Line Array of Acoustic Vector Sensors Based on Mode Extraction. Sensors, 18(11), 3692. https://doi.org/10.3390/s18113692
- Murphy, S.M., & Hines, P.C. (2014). Examining the Robustness of Automated Aural Classification of Active Sonar Echoes. The Journal of the Acoustical Society of America, 135(2), 626-636. https://doi.org/10.1121/1.4861922
- Nannuru, S., Gemba, K.L., Gerstoft, P., Hodgkiss, W.S., & Mecklenbrauker, C.F. (2019). Sparse Bayesian Learning with Multiple Dictionaries. Signal Processing, 159, 159-170. https://doi.org/10.1016/j.sigpro.2019.02.003
- Nielsen, R.O. (1991). Sonar Signal Processing. Artech House.
- Niu, H., Gong, Z., Ozanich, E., Gerstoft, P., Wang, H., & Li, Z. (2019). Deep-learning Source Localization Using Multi-Frequency Magnitude-only Data. The Journal of the Acoustical Society of America, 146(1), 211-222. https://doi.org/10.1121/1.5116016
- Niu, H., Ozanich, E., & Gerstoft, P. (2017a). Ship Localization in Santa Barbara Channel Using Machine Learning Classifiers. The Journal of the Acoustical Society of America, 142(5), EL455-EL460. https://doi.org/10.1121/1.5010064
- Niu, H., Reeves, E., & Gerstoft, P. (2017b). Source Localization in an Ocean Waveguide Using Supervised Machine Learning. The Journal of the Acoustical Society of America, 142(3), 1176-1188. https://doi.org/10.1121/1.5000165
- Ozard, J.M., Zakarauskas, P., & Ko, P. (1991). An Artificial Neural Network for Range and Depth Discrimination in Matched Field Processing. The Journal of the Acoustical Society of America, 90(5), 2658-2663. https://doi.org/10.1121/1.401860
- Park, Y., Seong, W., & Choo, Y. (2017). Compressive Time Delay Estimation off the Grid. The Journal of the Acoustical Society of America, 141(6), EL585-EL591. https://doi.org/10.1121/1.4985612
- Shin, F.B., & Kil, D.H. (1996). Full-spectrum Signal Processing Using a Classify-before-detect Paradigm. The Journal of the Acoustical Society of America, 99(4), 2188-2197. https://doi.org/10.1121/1.415407
- Tipping, M.E. (2001). Sparse Bayesian Learning and the Relevance Vector Machine. Journal of Machine Learning Research, 1(Jun), 211-244.
- Tucker, S., & Brown, G.J. (2005). Classification of Transient Sonar Sounds Using Perceptually Motivated Features. IEEE Journal of Oceanic Engineering, 30(3), 588-600. https://doi.org/10.1109/JOE.2005.850910
- Wang, W., Ni, H., Su, L., Hu, T., Ren, Q., Gerstoft, P., & Ma, L. (2019a). Deep Transfer Learning for Source Ranging: Deep-sea Experiment Results. The Journal of the Acoustical Society of America, 146(4), EL317-EL322. https://doi.org/10.1121/1.5126923
- Wang, X., Liu, A., Zhang, Y., & Xue, F. (2019b). Underwater Acoustic Target Recognition: A Combination of Multi-Dimensional Fusion Features and Modified Deep Neural Network. Remote Sensing, 11(16), 1888. https://doi.org/10.3390/rs11161888
- Wang, Y., & Peng, H. (2018). Underwater Acoustic Source Localization Using Generalized Regression Neural Network. The Journal of the Acoustical Society of America, 143(4), 2321-2331. https://doi.org/10.1121/1.5032311
- Xenaki, A., & Gerstoft, P. (2015). Grid-free Compressive Beamforming. The Journal of the Acoustical Society of America, 137(4), 1923-1935. https://doi.org/10.1121/1.4916269
- Xenaki, A., Gerstoft, P., & Mosegaard, K. (2014). Compressive Beamforming. The Journal of the Acoustical Society of America, 136(1), 260-271. https://doi.org/10.1121/1.4883360
- Yang, H., Lee, K., Choo, Y., Kim, K. (2020). Underwater Acoustic Research Trends with Machine Learning: General Background. Journal of Ocean Engineering and Technology, 34(2), 147-154. https://doi.org/10.26748/2020.015
- Yang, H., Shen, S., Yao, X., Sheng, M., & Wang, C. (2018). Competitive Deep-belief Networks for Underwater Acoustic Target recognition. Sensors, 18(4), 952. https://doi.org/10.3390/s18040952
- Yang, L., & Chen, K. (2015). Performance and Strategy Comparisons of Human Listeners and Logistic Regression in Discriminating Underwater Targets. The Journal of the Acoustical Society of America, 138(5), 3138-3147. https://doi.org/10.1121/1.4935390
- Young, V.W., & Hines, P.C. (2007). Perception-based Automatic Classification of Impulsive-source Active Sonar Echoes. The Journal of the Acoustical Society of America, 122(3), 1502-1517. https://doi.org/10.1121/1.2767001
- Zhang, Z., & Rao, B.D. (2011). Sparse Signal Recovery with Temporally Correlated Source Vectors Using Sparse Bayesian Learning. IEEE Journal of Selected Topics in Signal Processing, 5(5), 912-926. https://doi.org/10.1109/JSTSP.2011.2159773
- Zhang, Z., & Rao, B.D. (2013). Extension of SBL Algorithms for the Recovery of Block Sparse Signals with Intra-block Correlation. IEEE Transactions on Signal Processing, 61(8), 2009-2015. https://doi.org/10.1109/TSP.2013.2241055
- Zion, B., Beran, M., Chin. S., & Howard, J.J. (1991). A Neural Network Approach to Source Localization. The Journal of the Acoustical Society of America, 90(4), 2081-2090. https://doi.org/10.1121/1.401635