DOI QR코드

DOI QR Code

Underwater Acoustic Research Trends with Machine Learning: Passive SONAR Applications

  • Yang, Haesang (Department of Naval Architecture & Ocean Engineering, Seoul National University) ;
  • Lee, Keunhwa (Department of Defense System Engineering, Sejong University) ;
  • Choo, Youngmin (Department of Defense System Engineering, Sejong University) ;
  • Kim, Kookhyun (School of Naval Architecture & Ocean Engineering, Tongmyong University)
  • Received : 2020.03.02
  • Accepted : 2020.04.13
  • Published : 2020.06.30

Abstract

Underwater acoustics, which is the domain that addresses phenomena related to the generation, propagation, and reception of sound waves in water, has been applied mainly in the research on the use of sound navigation and ranging (SONAR) systems for underwater communication, target detection, investigation of marine resources and environment mapping, and measurement and analysis of sound sources in water. The main objective of remote sensing based on underwater acoustics is to indirectly acquire information on underwater targets of interest using acoustic data. Meanwhile, highly advanced data-driven machine-learning techniques are being used in various ways in the processes of acquiring information from acoustic data. The related theoretical background is introduced in the first part of this paper (Yang et al., 2020). This paper reviews machine-learning applications in passive SONAR signal-processing tasks including target detection/identification and localization.

Keywords

References

  1. Allen, N., Hines, P.C., & Young, V.W. (2011). Performances of Human Listeners and an Automatic Aural Classifier in Discriminating between Sonar Target Echoes and Clutter. The Journal of the Acoustical Society of America, 130(3), 1287-1298. https://doi.org/10.1121/1.3614549
  2. Chakrabarty, S., & Habets, E.A. (2017). Broadband DOA Estimation Using Convolutional Neural Networks Trained with Noise Signals. Paper Presented at the 2017 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA). https://doi.org/10.1109/WASPAA.2017.8170010
  3. Chi, J., Li, X., Wang, H., Gao, D., & Gerstoft, P. (2019). Sound Source Ranging Using a Feed-forward Neural Network with Fitting-based Early Stopping. The Journal of the Acoustical Society of America, 146(3), EL258-EL264. https://doi.org/10.1121/1.5126115
  4. Choi, J., Choo, Y., & Lee, K. (2019). Acoustic Classification of Surface and Underwater Vessels in the Ocean Using Supervised Machine Learning. Sensors, 19(16), 3492. https://doi.org/10.3390/s19163492
  5. Conan, E., Bonnel, J., Chonavel, T., & Nicolas, B. (2016). Source Depth Discrimination with a Vertical Line Array. The Journal of the Acoustical Society of America, 140(5), EL434-EL440. https://doi.org/10.1121/1.4967506
  6. Conan, E., Bonnel, J., Nicolas, B., & Chonavel, T. (2017). Using the Trapped Energy Ratio for Source Depth Discrimination with a Horizontal Line Array: Theory and Experimental Results. The Journal of the Acoustical Society of America, 142(5), 2776-2786. https://doi.org/10.1121/1.5009449
  7. Das, A. (2017). Theoretical and Experimental Comparison of Off-grid Sparse Bayesian Direction-of-arrival Estimation Algorithms. IEEE Access, 5, 18075-18087. https://doi.org/10.1109/ACCESS.2017.2747153
  8. Das, A., & Sejnowski, T.J. (2017). Narrowband and Wideband Off-grid Direction-of-arrival Estimation via Sparse Bayesian Learning. IEEE Journal of Oceanic Engineering, 43(1), 108-118. https://doi.org/10.1109/JOE.2017.2660278
  9. Donoho, D.L. (2006). Compressed Sensing. IEEE Transactions on Information theory, 52(4), 1289-1306. https://doi.org/10.1109/TIT.2006.871582
  10. Edelmann, G.F., & Gaumond, C.F. (2011). Beamforming Using Compressive Sensing. The Journal of the Acoustical Society of America, 130(4), EL232-EL237. https://doi.org/10.1121/1.3632046
  11. Gemba, K.L., Nannuru, S., & Gerstoft, P. (2019). Robust Ocean Acoustic Localization with Sparse Bayesian Learning. IEEE Journal of Selected Topics in Signal Processing, 13(1), 49-60. https://doi.org/10.1109/JSTSP.2019.2900912
  12. Gerstoft, P., Mecklenbrauker, C.F., Xenaki, A., & Nannuru, S. (2016). Multisnapshot Sparse Bayesian Learning for DOA. IEEE Signal Processing Letters, 23(10), 1469-1473. https://doi.org/10.1109/LSP.2016.2598550
  13. Gerstoft, P., Nannuru, S., Mecklenbrauker, C.F., & Leus, G. (2019). DOA Estimation in Heteroscedastic Noise. Signal Processing, 161, 63-73. https://doi.org/10.1016/j.sigpro.2019.03.014
  14. Hemminger, T.L., & Pao, Y.-H. (1994). Detection and Classification of Underwater Acoustic Transients Using Neural Networks. IEEE Transactions on Neural Networks, 5(5), 712-718. https://doi.org/10.1109/72.317723
  15. Huang, Z., Xu, J., Gong, Z., Wang, H., & Yan, Y. (2018). Source Localization Using Deep Neural Networks in a Shallow Water Environment. The Journal of the Acoustical Society of America, 143(5), 2922-2932. https://doi.org/10.1121/1.5036725
  16. Jensen, F.B., Kuperman, W.A., Porter, M.B., & Schmidt, H. (2011). Computational Ocean Acoustics. Springer Science & Business Media.
  17. Ke, X., Yuan, F., & Cheng, E. (2018). Underwater Acoustic Target Recognition Based on Supervised Feature-Separation Algorithm. Sensors, 18(12), 4318. https://doi.org/10.3390/s18124318
  18. Komari Alaie, H., & Farsi, H. (2018). Passive Sonar Target Detection Using Statistical Classifier and Adaptive Threshold. Applied Sciences, 8(1), 61. https://doi.org/10.3390/app8010061
  19. Lefort, R., Real, G., & Dremeau A. (2017). Direct Regressions for Underwater Acoustic Source Localization in Fluctuating Oceans. Applied Acoustics, 116, 303-310. https://doi.org/10.1016/j.apacoust.2016.10.005
  20. Liang, G., Zhang, Y., Zhang, G., Feng, J., & Zheng, C. (2018). Depth Discrimination for Low-Frequency Sources Using a Horizontal Line Array of Acoustic Vector Sensors Based on Mode Extraction. Sensors, 18(11), 3692. https://doi.org/10.3390/s18113692
  21. Murphy, S.M., & Hines, P.C. (2014). Examining the Robustness of Automated Aural Classification of Active Sonar Echoes. The Journal of the Acoustical Society of America, 135(2), 626-636. https://doi.org/10.1121/1.4861922
  22. Nannuru, S., Gemba, K.L., Gerstoft, P., Hodgkiss, W.S., & Mecklenbrauker, C.F. (2019). Sparse Bayesian Learning with Multiple Dictionaries. Signal Processing, 159, 159-170. https://doi.org/10.1016/j.sigpro.2019.02.003
  23. Nielsen, R.O. (1991). Sonar Signal Processing. Artech House.
  24. Niu, H., Gong, Z., Ozanich, E., Gerstoft, P., Wang, H., & Li, Z. (2019). Deep-learning Source Localization Using Multi-Frequency Magnitude-only Data. The Journal of the Acoustical Society of America, 146(1), 211-222. https://doi.org/10.1121/1.5116016
  25. Niu, H., Ozanich, E., & Gerstoft, P. (2017a). Ship Localization in Santa Barbara Channel Using Machine Learning Classifiers. The Journal of the Acoustical Society of America, 142(5), EL455-EL460. https://doi.org/10.1121/1.5010064
  26. Niu, H., Reeves, E., & Gerstoft, P. (2017b). Source Localization in an Ocean Waveguide Using Supervised Machine Learning. The Journal of the Acoustical Society of America, 142(3), 1176-1188. https://doi.org/10.1121/1.5000165
  27. Ozard, J.M., Zakarauskas, P., & Ko, P. (1991). An Artificial Neural Network for Range and Depth Discrimination in Matched Field Processing. The Journal of the Acoustical Society of America, 90(5), 2658-2663. https://doi.org/10.1121/1.401860
  28. Park, Y., Seong, W., & Choo, Y. (2017). Compressive Time Delay Estimation off the Grid. The Journal of the Acoustical Society of America, 141(6), EL585-EL591. https://doi.org/10.1121/1.4985612
  29. Shin, F.B., & Kil, D.H. (1996). Full-spectrum Signal Processing Using a Classify-before-detect Paradigm. The Journal of the Acoustical Society of America, 99(4), 2188-2197. https://doi.org/10.1121/1.415407
  30. Tipping, M.E. (2001). Sparse Bayesian Learning and the Relevance Vector Machine. Journal of Machine Learning Research, 1(Jun), 211-244.
  31. Tucker, S., & Brown, G.J. (2005). Classification of Transient Sonar Sounds Using Perceptually Motivated Features. IEEE Journal of Oceanic Engineering, 30(3), 588-600. https://doi.org/10.1109/JOE.2005.850910
  32. Wang, W., Ni, H., Su, L., Hu, T., Ren, Q., Gerstoft, P., & Ma, L. (2019a). Deep Transfer Learning for Source Ranging: Deep-sea Experiment Results. The Journal of the Acoustical Society of America, 146(4), EL317-EL322. https://doi.org/10.1121/1.5126923
  33. Wang, X., Liu, A., Zhang, Y., & Xue, F. (2019b). Underwater Acoustic Target Recognition: A Combination of Multi-Dimensional Fusion Features and Modified Deep Neural Network. Remote Sensing, 11(16), 1888. https://doi.org/10.3390/rs11161888
  34. Wang, Y., & Peng, H. (2018). Underwater Acoustic Source Localization Using Generalized Regression Neural Network. The Journal of the Acoustical Society of America, 143(4), 2321-2331. https://doi.org/10.1121/1.5032311
  35. Xenaki, A., & Gerstoft, P. (2015). Grid-free Compressive Beamforming. The Journal of the Acoustical Society of America, 137(4), 1923-1935. https://doi.org/10.1121/1.4916269
  36. Xenaki, A., Gerstoft, P., & Mosegaard, K. (2014). Compressive Beamforming. The Journal of the Acoustical Society of America, 136(1), 260-271. https://doi.org/10.1121/1.4883360
  37. Yang, H., Lee, K., Choo, Y., Kim, K. (2020). Underwater Acoustic Research Trends with Machine Learning: General Background. Journal of Ocean Engineering and Technology, 34(2), 147-154. https://doi.org/10.26748/2020.015
  38. Yang, H., Shen, S., Yao, X., Sheng, M., & Wang, C. (2018). Competitive Deep-belief Networks for Underwater Acoustic Target recognition. Sensors, 18(4), 952. https://doi.org/10.3390/s18040952
  39. Yang, L., & Chen, K. (2015). Performance and Strategy Comparisons of Human Listeners and Logistic Regression in Discriminating Underwater Targets. The Journal of the Acoustical Society of America, 138(5), 3138-3147. https://doi.org/10.1121/1.4935390
  40. Young, V.W., & Hines, P.C. (2007). Perception-based Automatic Classification of Impulsive-source Active Sonar Echoes. The Journal of the Acoustical Society of America, 122(3), 1502-1517. https://doi.org/10.1121/1.2767001
  41. Zhang, Z., & Rao, B.D. (2011). Sparse Signal Recovery with Temporally Correlated Source Vectors Using Sparse Bayesian Learning. IEEE Journal of Selected Topics in Signal Processing, 5(5), 912-926. https://doi.org/10.1109/JSTSP.2011.2159773
  42. Zhang, Z., & Rao, B.D. (2013). Extension of SBL Algorithms for the Recovery of Block Sparse Signals with Intra-block Correlation. IEEE Transactions on Signal Processing, 61(8), 2009-2015. https://doi.org/10.1109/TSP.2013.2241055
  43. Zion, B., Beran, M., Chin. S., & Howard, J.J. (1991). A Neural Network Approach to Source Localization. The Journal of the Acoustical Society of America, 90(4), 2081-2090. https://doi.org/10.1121/1.401635