• 제목/요약/키워드: Underwater remote sensing

검색결과 33건 처리시간 0.019초

A STUDY ON THE DIFFUSE ATTENUATION COEFFICIENT OF DOWN-WELLING IRRADIANCE AROUND THE YELLOW SEA

  • Min, Jee-Eun;Ahn, Yu-Hwan;Ryu, Joo-Hyung;Lee, Kyu-Sung
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
    • /
    • pp.459-462
    • /
    • 2006
  • The diffuse attenuation coefficient for down-welling irradiance ($K_d$) is an important parameter for ocean studies including remote sensing applications. For the vast ocean, ocean color remote sensing is the only possible means to get the fine-scale measurements of $K_d$. To develop a technique of estimating $K_d$ from remotely sensed data, the following underwater optical parameters (absorption coefficient (a), attenuation coefficient (c), scattering coefficient (b), diffuse attenuation coefficient ($K_d$), etc.) have been studied. For this research we conducted the field campaign around the Yellow Sea at $8{\sim}9$ June, 2006. We obtained a set of underwater optical parameter data: down-welling irradiance ($E_d$), up-welling irradiance ($E_u$) and up-welling radiance ($L_u$) using TriOS optical sensors and a, c coefficient using Spectral Absorption and Attenuation Meter (AC-S). We then derived $K_d$ values from $E_d$ for each depth.

  • PDF

Underwater Acoustic Research Trends with Machine Learning: Ocean Parameter Inversion Applications

  • Yang, Haesang;Lee, Keunhwa;Choo, Youngmin;Kim, Kookhyun
    • 한국해양공학회지
    • /
    • 제34권5호
    • /
    • pp.371-376
    • /
    • 2020
  • Underwater acoustics, which is the study of the phenomena related to sound waves in water, has been applied mainly in research on the use of sound navigation and range (SONAR) systems for communication, target detection, investigation of marine resources and environments, and noise measurement and analysis. Underwater acoustics is mainly applied in the field of remote sensing, wherein information on a target object is acquired indirectly from acoustic data. Presently, machine learning, which has recently been applied successfully in a variety of research fields, is being utilized extensively in remote sensing to obtain and extract information. In the earlier parts of this work, we examined the research trends involving the machine learning techniques and theories that are mainly used in underwater acoustics, as well as their applications in active/passive SONAR systems (Yang et al., 2020a; Yang et al., 2020b; Yang et al., 2020c). As a follow-up, this paper reviews machine learning applications for the inversion of ocean parameters such as sound speed profiles and sediment geoacoustic parameters.

고해상도 광학위성을 이용한 해상 유출유 면적 산출: 심포니호 기름유출 사고 사례 (Calculation Method of Oil Slick Area on Sea Surface Using High-resolution Satellite Imagery: M/V Symphony Oil Spill Accident)

  • 김태호;신혜경;장소영;유정미;김평중;양찬수
    • 대한원격탐사학회지
    • /
    • 제37권6_1호
    • /
    • pp.1773-1784
    • /
    • 2021
  • 해상에서 발생하는 유출유 사고는 피해 최소화를 위해서 신속한 현황 정보 수집이 필수적이며, 인공위성은 해상에 유출된 기름을 탐지하는데 매우 유용한 도구이다. 최근에 활용 가능한 인공위성 수가 급속하게 증가함에 따라, 사고발생 이후 준실시간 수준의 해상 유출유 현황 정보 생성이 가능해졌다. 본 연구에서는 2021년 4월 27일 중국 칭다오항 앞바다에서 발생한 심포니호 기름 유출사고를 대상으로 다종 인공위성 영상을 이용하여 기름 유출 면적을 산출하였다. 특히, 2 m 공간해상도 정보 획득이 가능한 고해상도 상용 인공위성 영상을 이용하여 기름유출 면적 산출의 정확도 향상 가능성을 평가하였다. 4월 27일부터 5월 13일까지 Sentinel-1, Sentinel-2, LANDSAT-8, GEO-KOMPSAT-2B (GOCI-II) 및 Skysat 위성영상을 수집하였으며, 기상조건을 고려하여 탐지 가능한 5장의 영상을 대상으로 유출유 탐지를 수행하였다. 유출된 기름은 사고발생 지점으로부터 남서-북동 방향으로 확산하면서, 외해에서 육지 쪽으로 이동하였다. 이러한 이동 경향은 Skysat 영상에서 확인이 가능하였으며, 사고 위치로부터 기름 입자의 이동예측을 수행한 결과와 유사하게 나타났다. 고해상도 인공위성 영상 탐지결과 및 이동예측 결과를 이용하여, 5월 1일 Sentinel-1A 영상에서 사고지점 북쪽 해역의 패치는 유사 기름으로 추정하였다. 이러한 오탐지를 제거한 결과 유출유 면적은 사고발생 후 선형적으로 증가하는 경향을 나타냈다. 본 연구 결과는 향후 고해상도 광학위성의 사용이 유출유의 분포 면적을 더욱 정확하게 산출함을 보여주었으며, 해상유출유 대응 과정에서 효율적인 방제계획 수립에 기여할 것으로 판단된다.

영상 강화 기법을 통한 부유성 해양오염물질 탐지 기술 적용 가능성 평가: 해수면의 얇은 유막을 대상으로 (Evaluation of Application Possibility for Floating Marine Pollutants Detection Using Image Enhancement Techniques: A Case Study for Thin Oil Film on the Sea Surface)

  • 장소영;박영빈;권재엽;이상헌;김태호
    • 대한원격탐사학회지
    • /
    • 제39권6_1호
    • /
    • pp.1353-1369
    • /
    • 2023
  • 해상에서는 재난·재해 사고가 발생했을 시 바람 등에 의한 기상영향과 해류, 조류와 같은 해상영향에 의해 피해 규모가 달라지게 되며, 빠른 현장 파악을 통해 적합한 방제 방안을 세워 피해 규모를 최소화할 의무가 있다. 특히, 해상에 유출되는 오염물질 중 상대적으로 낮은 점도와 표면장력으로 인해 해수면에서 얇은 막으로 존재하는 오염물질은 육안으로 식별하기 어렵다. 따라서 본 연구에서는 현장에서 쉽게 활용 가능한 촬영장비를 활용하여 RGB 이미지에서 해수면의 부유성 오염물질을 탐지하는 알고리즘을 개발하고, 실 해역에서 획득된 입력자료를 활용하여 알고리즘의 성능을 평가하고자 한다. 개발된 알고리즘은 영상 강화 기법을 활용하여 오염물질과 일반 해수면의 강도값 대비를 향상시키고, 히스토그램(Histogram) 분석을 통해 배경 임계값을 찾아 오염물질 이외의 부유물질을 제거하여 최종적으로 오염물질을 분류한다. 본 연구에서는 개발된 알고리즘의 성능평가를 위해서 대체물질을 이용한 실 해역 테스트를 수행하였으며, 대부분의 부유성 해양오염물질은 탐지되었으나 파도가 강한 곳에서는 오탐지 영역이 발생하였다. 그러나 기존 알고리즘에서 단일 임계값을 사용한 탐지 방법보다 약 3배 이상의 개선된 탐지 결과를 보여준다. 본 연구개발 결과를 통해 기존 현장에서 육안으로 식별이 어려웠던 부유성 해양오염물질을 탐지함으로써 현장에서의 방제 대응 활동에 유용하게 사용될 것으로 기대된다.

Application of High-spatial-resolution Satellite Images to Monitoring Coral Reef Habitat Changes at Weno Island Chuuk, Micronesia

  • Choi, Jong-Kuk;Ryu, Joo-Hyung;Min, Jee-Eun
    • 대한원격탐사학회지
    • /
    • 제37권4호
    • /
    • pp.687-698
    • /
    • 2021
  • We present quantitative estimations of changes in the areal extent of coral reef habitats at Weno Island, Micronesia, using high-spatial-resolution remote sensing images and field observations. Coral reef habitat maps were generated from Kompsat-2 satellite images for September 2008 and September 2010, yielding classifications with 78.6% and 72.4% accuracy, respectively, which is a relatively high level of agreement. The difference between the number of pixels occupied by each seabed type was calculated, revealing that the areal extent of living corals decreased by 8.2 percentage points between 2008 and 2010. This result is consistent with a comparison of the seabed types determined by field observations. This study can be used as a basis for remediation planning to diminish the impact of changes in coral reefs.

Underwater Acoustic Research Trends with Machine Learning: Passive SONAR Applications

  • Yang, Haesang;Lee, Keunhwa;Choo, Youngmin;Kim, Kookhyun
    • 한국해양공학회지
    • /
    • 제34권3호
    • /
    • pp.227-236
    • /
    • 2020
  • Underwater acoustics, which is the domain that addresses phenomena related to the generation, propagation, and reception of sound waves in water, has been applied mainly in the research on the use of sound navigation and ranging (SONAR) systems for underwater communication, target detection, investigation of marine resources and environment mapping, and measurement and analysis of sound sources in water. The main objective of remote sensing based on underwater acoustics is to indirectly acquire information on underwater targets of interest using acoustic data. Meanwhile, highly advanced data-driven machine-learning techniques are being used in various ways in the processes of acquiring information from acoustic data. The related theoretical background is introduced in the first part of this paper (Yang et al., 2020). This paper reviews machine-learning applications in passive SONAR signal-processing tasks including target detection/identification and localization.

딥러닝 기반 다중 객체 추적 모델을 활용한 조식성 무척추동물 현존량 추정 기법 연구 (A Study on Biomass Estimation Technique of Invertebrate Grazers Using Multi-object Tracking Model Based on Deep Learning)

  • 박수호;김흥민;이희원;한정익;김탁영;임재영;장선웅
    • 대한원격탐사학회지
    • /
    • 제38권3호
    • /
    • pp.237-250
    • /
    • 2022
  • 본 연구에서는 딥러닝 기반 다중 객체 추적 모델을 활용하여 수중드론으로 촬영된 영상으로부터 특정 해역의 조식동물 현존량을 추정하는 방법을 제안한다. 수중드론 영상 내에 포함된 조식동물을 클래스 별로 탐지하기 위해 YOLOv5 (You Only Look Once version 5)를 활용하였으며, 개체수 집계를 위해 DeepSORT (Deep Simple Online and real-time tracking)를 활용하였다. GPU 가속기를 활용할 수 있는 워크스테이션 환경에서 두 모델의 성능 평가를 수행하였으며, YOLOv5 모델은 평균 0.9 이상의 모델의 정확도(mean Average Precision, mAP)를 보였으며, YOLOv5s 모델과 DeepSORT 알고리즘을 활용하였을 때, 4 k 해상도 기준 약 59 fps의 속도를 보이는 것을 확인하였다. 실해역 적용 결과 약 28%의 과대 추정하는 경향이 있었으나 객체 탐지 모델만 활용하여 현존량을 추정하는 것과 비교했을 때 오차 수준이 낮은 것을 확인하였다. 초점을 상실한 프레임이 연속해서 발생할 때와 수중드론의 조사 방향이 급격히 전환되는 환경에서의 정확도 향상을 위한 후속 연구가 필요하지만 해당 문제에 대한 개선이 이루어진다면, 추후 조식동물 구제 사업 및 모니터링 분야의 의사결정 지원자료 생산에 활용될 수 있을 것으로 판단된다.

Landsat 자료를 이용한 금강하류의 충적주 환경변화에 관한 연구

  • 장동호;지광훈;이봉주
    • 대한원격탐사학회지
    • /
    • 제11권2호
    • /
    • pp.59-73
    • /
    • 1995
  • The study is focused on the analysis of geomorphological environment changes of alluvial bar in lower Kum river using satellite-based multitemporal/multisensor data. Landsat datas for environment changes analysis consists of Landset MSS(2 scenes) and Landset TM(7 scenes) acquired from 1979 to 1994. This study is to develop the analysis techniques for the environment change detection of using ratio, classification, false color composite etc, of Landsat data especially useful to the geomorphological study of tidal flats and river channels. The results of this study can be summarized as follows : 1. The lower Kum River alluvial bar have had rapid geomorphological changes after the construction of the temporary dam to block the river flowing in 1983. The most alluvial bar located in the river has both bankway growth, especially the allurival bar in the Lower Kum River had grown between 1983 to 1990. 2. After construction of the estuarine barrage, no remarkable geomorphological changes have been found in Kum River area but the growth and formation of new underwater bar has continued. The enormous materials was needed for the growth and formations of new underwater barrier oslands and bar would be supplied from the sea bottom and river sediment to diminish of stream velocity after construction of the estuarine barrage.

GOCI-II 영상 기반 Random Forest 모델을 이용한 해빙 모니터링 적용 가능성 평가: 2021-2022년 랴오둥만을 대상으로 (Evaluation of Applicability of Sea Ice Monitoring Using Random Forest Model Based on GOCI-II Images: A Study of Liaodong Bay 2021-2022)

  • 김진영;장소영;권재엽;김태호
    • 대한원격탐사학회지
    • /
    • 제39권6_2호
    • /
    • pp.1651-1669
    • /
    • 2023
  • 해빙(sea ice)은 현재 전 세계 해양 면적의 약 7%를 차지하고 있으며 계절적, 연간 변화를 보이고 주로 극지방과 고위도 지역에 나타난다. 해빙은 대규모 공간 규모에서 다양한 종류로 형성되며 석유 및 가스탐사, 기타 해양활동이 급속히 증가하는 발해해는 해양 구조물 피해 및 해상 운송, 해양 생태계에 심각한 영향을 미치기 때문에 시계열 모니터링을 통해 해빙의 면적 및 유형 분류를 분석하는 것이 매우 중요하다. 현재 고해상도 위성영상 및 현장 실측 자료를 바탕으로 해빙의 종류 및 영역에 대한 연구가 진행되고 있지만 현장 실측자료를 획득하여 해빙 모니터링에는 한계가 있다. 고해상도 광학 위성영상은 광범위에서 해빙의 유형을 육안으로 탐지하고 식별할 수 있고, 짧은 시간해상도를 갖는 해양위성인 천리안 2B호(Geostationary Ocean Color Imager-II, GOCI-II)를 이용하여 해빙 모니터링의 공백을 보완할 수 있다. 이 연구에서는 고해상도 광학위성영상을 이용하여 생산된 학습자료를 기반으로 규칙기반 기계학습 모델을 훈련시키고 이를 GOCI-II 영상에서 탐지를 수행함으로써, 해빙 모니터링 활용 가능성을 알아보고자 하였다. 학습 자료는 발해(Bohai Sea)의 2021-2022년 랴오둥만(Liaodong Bay)을 대상으로 추출하였으며, GOCI-II를 활용한 Random Forest (RF) 모델을 구축하여 기존 normalized difference snow index (NDSI) 지수 기반 및 고해상도 위성영상에서 획득된 해빙 영역과 정성적 및 정량적 비교 분석하였다. 본 연구 결과 해빙의 영역을 과소평가한 NDSI 지수 기반 결과와 달리 비교적 자세한 해빙 영역을 탐지하였으며 유형별 해빙을 분류할 수 있어 해빙 모니터링이 가능함을 확인하였다. 향후 지속적인 학습 자료 및 해빙형성에 영향인자 구축을 통해 탐지 모델의 정확도를 향상시킨다면 고위도 해양 지역에서 해빙 모니터링 분야에 활용할 수 있을 것으로 기대된다.