• 제목/요약/키워드: Underwater control system

검색결과 314건 처리시간 0.028초

수중함 전기 계통의 고 신뢰도 설계를 위한 고장나무분석과 적용 (Fault Tree Analysis and its Application for Designing High Reliability Electrical System in Underwater Vehicle)

  • 김진산;최진성;빈재구;강필순
    • 전기학회논문지
    • /
    • 제66권1호
    • /
    • pp.33-39
    • /
    • 2017
  • A top priority in the design of underwater vehicle is to guarantee the dependability of the electric system because failure of the electrical power supply system is directly related to the life of the passengers. In this paper, we present four kinds of alternative designs to improve reliability of electrical system in underwater vehicle. To reduce the risk and to increase availability of the electrical system, we use the redundancy of the grid structure and power converter. For all design alternatives, we carry out Fault Tree Analysis. Based on the FTA result, we implement RAM simulation to compare the risk and availability for the proposed design alternatives.

수중비행체의 자율제어를 위한 지능형 3-D 장애물회피 알고리즘 (Intelligent 3-D Obstacle Avoidance Algorithm for Autonomous Control of Underwater Flight Vehicle)

  • 김현식;진태석;서주노
    • 한국지능시스템학회논문지
    • /
    • 제21권3호
    • /
    • pp.323-328
    • /
    • 2011
  • 실제 시스템 적용에 있어서, 수중비행체(Underwater Flight Vehicle : UFV)의 자율제어(autonomous control)를 위한 3-D 장애물회피(obstacle avoidance) 시스템은 다음과 같은 문제점들을 가지고 있다. 즉, 소나(sonar)는 지역적 탐색영역 내에서 장애물의 거리(range)/방위(bearing) 정보를 제공하며, 자율수중운동체(Autonomous Underwater Vehicle : AUV) 관점에서 에너지 소비 및 음향학적 소음이 적은 시스템을 필요로 하며, 최대 피치 및 심도와 같은 UFV 운용 제약조건을 가진다. 나아가, 구조와 파라메터의 관점에 있어서 용이한 설계 절차를 요구한다. 이 문제를 해결하기 위해서 진화 전략(Evolution Strategy : ES) 및 퍼지논리 제어기(Fuzzy Logic Controller : FLC)를 이용하는 지능형 3-D 장애물회피 알고리즘이 제안되었다. 제안된 알고리즘의 성능을 검증하기 위해 UFV의 3-D 장애물회피가 수행되었다. 시뮬레이션 결과는 제안된 알고리즘이 실제 시스템에 존재하는 문제점들을 효과적으로 해결하고 있음을 보여준다.

외란관측기를 바탕으로 $H_{\infty}$제어 방법을 이용한 수중 로봇 팔의 원격조종 제어기 설계 (Teleoperation Controller Design for an Underwater Manipulator Using an $H_{\infty}$ Control Scheme Based on Disturbance Observer)

  • 유지환;권동수;이판묵;홍석원
    • 제어로봇시스템학회논문지
    • /
    • 제6권7호
    • /
    • pp.578-585
    • /
    • 2000
  • This paper presents a robust and systematic bilateral controller design method for a teleoperation of an underwater manipulator. Disturbance observer is used as a local controller of the master and underwater slave manipulator to set up the teleoperation system as a nominal model by compensating coupled nonlinear terms model uncertainties and external disturbances in the water. Using the linearized master/slave model a $H_{\infty}$ optimal control scheme is applied to systematically construct a force reflecting bilateral controller.

  • PDF

DWT/UKF를 이용한 수면 BEACON의 위치추정 (Estimated Position of Sea-Surface Beacon Using DWT/UKF)

  • 윤바다;윤하늘;최성희;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제19권4호
    • /
    • pp.341-348
    • /
    • 2013
  • A location estimation algorithm based on the sea-surface beacon is proposed in this paper. The beacon is utilized to provide ultrasonic signals to the underwater vehicles around the beacon to estimate precise position of underwater vehicles (ROV, AUV, Diver robot), which is named as USBL (Ultra Short Baseline) system. It utilizes GPS and INS data for estimating its position and adopts DWT (Discrete Wavelet Transform) de-noising filter and UKF (Unscented KALMAN Filter) elaborating the position estimation. The beacon system aims at estimating the precise position of underwater vehicle by using USBL to receive the tracking signals. The most important one for the precise position estimation of underwater vehicle is estimating the position of the beacon system precisely. Since the beacon is on the sea-waves, the received GPS signals are noisy and unstable most of times. Therefore, the INS data (gyroscope sensor, accelerometer, magnetic compass) are obtained at the beacon on the sea-surface to compensate for the inaccuracy of the GPS data. The noises in the acceleration data from INS data are reduced by using DWT de-noising filter in this research. Finally the UKF localization system is proposed in this paper and the system performance is verified by real experiments.

수중운동체의 심도제어를 위한 제어기 설계 (Controller design for depth control of vehicle under seawater)

  • 이만형;박경철;곽한우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.516-521
    • /
    • 1993
  • In order to hold a underwater vehicle at a depth, we can modulate buoyancy that acts on the underwater vehicle. In this research, by using a ballon, we was able to generate buoyancy that could control depth in which vehicle was operate. And in order to control flux of air that was flowed in balloon, we used solenoid valve, relief valve and so on. We derived differential equations of volume of balloon, pressure of inside of balloon, dynamic of underwater vehicle, and air flux for the simulation and linearized these differential equation. So we designed LQG/LTR controller, and applied the controller to nonlinear system. Through the simulation, we compares the nonlinear system with the linear system and investigated the operation of solenoid valve.

  • PDF

신경회로망을 이용한 AUV의 시스템 동정화 및 응용 (System Idenification of an Autonomous Underwater Vehicle and Its Application Using Neural Network)

  • 이판묵;이종식
    • 한국해양공학회지
    • /
    • 제8권2호
    • /
    • pp.131-140
    • /
    • 1994
  • Dynamics of AUV has heavy nonlinearities and many unknown parameters due to its bluff shape and low cruising speed. Intelligent algorithms, therefore, are required to overcome these nonlinearities and unknown system dynamics. Several identification techniques have been suggested for the application of control of underwater vehicles during last decade. This paper applies the neural network to identification and motion control problem of AUVs. Nonlinear dynamic systems of an AUV are identified using feedforward neural network. Simulation results show that the learned neural network can generate the motion of AUV. This paper, also, suggest an adaptive control scheme up-dates the controller weights with reference model and feedforward neural network using error back propagation.

  • PDF

이동질량장치와 부력엔진을 포함한 무인 수중글라이더의 동역학 모델링 및 운동성능 해석 (Dynamic Modeling and Motion Analysis of Unmanned Underwater Gliders with Mass Shifter Unit and Buoyancy Engine)

  • 김동희;이상섭;최형식;김준영;이신제;이용국
    • 한국해양공학회지
    • /
    • 제28권5호
    • /
    • pp.466-473
    • /
    • 2014
  • Underwater gliders do not have any external propulsion systems that can generate and control their motion. Generally, underwater gliders would obtain a propulsive force through the lift force generated on the body by a fluid. Underwater gliders should be equipped with mechanisms that can induce heave and pitch motions. In this study, an inner movable and rotatable mass mechanism was proposed to generate the pitch and roll motions of an underwater glider. In addition, a buoyancy control unit was presented to adjust the displacement of the underwater glider. The buoyancy control unit could generate the heave motion of the underwater glider. In order to analyze the underwater dynamic behavior of this system, nonlinear 6-DOF dynamic equations that included mathematical models of the inner movable mass and buoyancy control unit were derived. Only kinematic characteristics such as the location of the inner movable mass and the piston position of the buoyancy control unit were considered because the velocities of these systems are very slow. The effectiveness of the proposed dynamic modeling was verified through sawtooth and spiraling motion simulations.

수중운동체의 유체계수 추정에 관한 연구 (A study on the hydrodynamic coefficients estimation of an underwater vehicle)

  • 양승윤;이만형
    • 제어로봇시스템학회논문지
    • /
    • 제2권2호
    • /
    • pp.121-126
    • /
    • 1996
  • The hydrodynamic coefficients estimation (HCE) is important to design the autopilot and to predict the maneuverability of an underwater vehicle. In this paper, a system identification is proposed for an HCE of an underwater vehicle. First, we attempt to design the HCE algorithm which is insensitive to initial conditions and has good convergence, and which enables the estimation of the coefficents by using measured displacements only. Second, the sensor and measurement system which gauges the data from the full scale trials is constructed and the data smoothing algorithm is also designed to filter the noise due to irregular fluid flow without changing the data characteristics itself. Lastly the hydrodynamic coefficients are estimated by applying the measured data of full scale trials to the developed algorithm, and the estimated coefficients are verified by full scale trials.

  • PDF

수중무선 디지털 통신을 위한 접속제어 프로토콜의 설계 (A Design of the Protocol for a Underwater Wireless Digital Communication System)

  • 이효성;이승민;김용태;이흥호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 D
    • /
    • pp.2643-2645
    • /
    • 2004
  • The underwater system autonomously is navigated by using the wireless communication system, which receives the control signal from surface ship. The study proposes the new media access control protocol for underwater vehicles network in the view of communication distance and as CSMA(Carrier Sense Multiple Access) for the existing networks is intended to communication network using the high speed media such as electric signal or microwave signal, and thus it may introduce the reduction in throughput when applying the protocols to underwater communication network.

  • PDF

전자기파의 감쇄신호를 이용한 무인 잠수정의 도킹시스템 개발 (Docking System for Unmanned Underwater Vehicle using Reduced Signal Strength Indicator)

  • 이기현;김진현
    • 제어로봇시스템학회논문지
    • /
    • 제18권9호
    • /
    • pp.830-836
    • /
    • 2012
  • According to increasing the importance of underwater environments, the needs of UUV are growing. This paper represents the mechanism and algorithm of UUV docking system with 21-inch torpedo tubes for military submarines as a docking station. To improve the reliability of the docking, torpedo tubes launch a wired ROV and next the ROV combined with UUV is retrieved. For estimating the relative position between the ROV and UUV, in this paper, combining RF sensors and vision system is proposed. The RSSI method of RF sensors is used to estimate the distance and the optical image is combined for the directional information.