• 제목/요약/키워드: Underlay networks

검색결과 44건 처리시간 0.024초

Improvement of Underlay Cooperative Cognitive Networks Bandwidth Efficiency under Interference and Power Constraints

  • Al-Mishmish, Hameed R.M.;Preveze, Barbaros;Alkhayyat, Ahmed
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권11호
    • /
    • pp.5335-5353
    • /
    • 2019
  • The definition of the bandwidth efficiency (BE) of cognitive cooperative network (CCN) is the ratio between a number of the licensed slot(s) or sub-channel(s) used by the unlicensed users to transmit a single data packet from the unlicensed transmitter to unlicensed destination, and from unlicensed relay(s) to unlicensed destination. This paper analyzes and improves the BE in the underlay CCN with a new reactive relay selection under interference and power constraints. In other words, this paper studies how unlicensed cooperative users use the licensed network slot(s) or sub-channel(s) efficiently. To this end, a reactive relay selection method named as Relay Automatic Repeat Request (RARQ) is proposed and utilized with a CCN under interference and power constraints. It is shown that the BE of CCN is higher than that of cooperative transmission (CT) due to the interference and power constraint. Furthermore, the BE of CCN is affected by the distance of the interference links which are between the unlicensed transmitter to the licensed destination and unlicensed relay to the licensed destination. In addition, the BE for multiple relays selection over a CCN under interference and power constraints is also analyzed and studied, and it is shown that the BE of CCN decreases as the number of relays increases.

후 순위 시스템의 성능 향상을 위한 언더레이 기반의 인지 무선 시스템의 사용자 선택 기법 (User Selection Scheme for the Performance Improvement of the Secondary System in Cognitive Radio Systems using Underlay Mode)

  • 최로미;변윤식
    • 한국통신학회논문지
    • /
    • 제38A권3호
    • /
    • pp.249-257
    • /
    • 2013
  • 최근 고속 데이터 서비스의 보급으로 데이터 사용량이 급증함에 따라 이를 수용하기 위한 주파수 자원의 효율적 사용 방법에 대한 연구가 주목받고 있다. 따라서 주파수 효율성을 향상시키기 위해 주파수 사용에 대한 우선권을 가진 사용자와 후순위에 있는 사용자가 해당 주파수 대역을 공유하는 기술인 인지 무선 기술(Cognitive Radio, CR)이 제안되었다. 본 논문에서는 CR 시스템에서 직교하는 채널 벡터를 이용하여 선순위 시스템에게 미치는 간섭을 줄이면서 후순위 시스템의 성능 향상을 동시에 고려한 사용자 선택 기법을 제안한다. 모의실험 결과 제안 기법을 적용했을 때 전체 시스템의 합 용량이 기존 기법보다 약 1.62bps/Hz의 이득을 가지는 것을 확인하였다.

Energy-Efficient Power Allocation for Cognitive Radio Networks with Joint Overlay and Underlay Spectrum Access Mechanism

  • Zuo, Jiakuo;Zhao, Li;Bao, Yongqiang;Zou, Cairong
    • ETRI Journal
    • /
    • 제37권3호
    • /
    • pp.471-479
    • /
    • 2015
  • Traditional designs of cognitive radio (CR) focus on maximizing system throughput. In this paper, we study the joint overlay and underlay power allocation problem for orthogonal frequency-division multiple access-based CR. Instead of maximizing system throughput, we aim to maximize system energy efficiency (EE), measured by a "bit per Joule" metric, while maintaining the minimal rate requirement of a given CR system, under the total power constraint of a secondary user and interference constraints of primary users. The formulated energy-efficient power allocation (EEPA) problem is nonconvex; to make it solvable, we first transform the original problem into a convex optimization problem via fractional programming, and then the Lagrange dual decomposition method is used to solve the equivalent convex optimization problem. Finally, an optimal EEPA allocation scheme is proposed. Numerical results show that the proposed method can achieve better EE performance.

Spectrum Sharing-Based Multi-Hop Decode-and-Forward Relay Networks under Interference Constraints: Performance Analysis and Relay Position Optimization

  • Bao, Vo Nguyen Quoc;Thanh, Tran Thien;Nguyen, Tuan Duc;Vu, Thanh Dinh
    • Journal of Communications and Networks
    • /
    • 제15권3호
    • /
    • pp.266-275
    • /
    • 2013
  • The exact closed-form expressions for outage probability and bit error rate of spectrum sharing-based multi-hop decode-and-forward (DF) relay networks in non-identical Rayleigh fading channels are derived. We also provide the approximate closed-form expression for the system ergodic capacity. Utilizing these tractable analytical formulas, we can study the impact of key network parameters on the performance of cognitive multi-hop relay networks under interference constraints. Using a linear network model, we derive an optimum relay position scheme by numerically solving an optimization problem of balancing average signal-to-noise ratio (SNR) of each hop. The numerical results show that the optimal scheme leads to SNR performance gains of more than 1 dB. All the analytical expressions are verified by Monte-Carlo simulations confirming the advantage of multihop DF relaying networks in cognitive environments.

Joint Resource Allocation for Cellular and D2D Multicast Based on Cognitive Radio

  • Wu, Xiaolu;Chen, Yueyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권1호
    • /
    • pp.91-107
    • /
    • 2014
  • Device-to-device (D2D) communication is an excellent technology to improve the system capacity by sharing the spectrum resources of cellular networks. Multicast service is considered as an effective transmission mode for the future mobile social contact services. Therefore, multicast based on D2D technology can exactly improve the spectrum resource efficiency. How to apply D2D technology to support multicast service is a new issue. In this paper, a resource allocation scheme based on cognitive radio (CR) for D2D underlay multicast communication (CR-DUM) is proposed to improve system performance. In the cognitive cellular system, the D2D users as secondary users employing multicast service form a group and reuse the cellular resources to accomplish a multicast transmission. The proposed scheme includes two steps. First, a channel allocation rule aiming to reduce the interference from cellular networks to receivers in D2D multicast group is proposed. Next, to maximize the total system throughput under the condition of interference and noise impairment, we formulate an optimal transmission power allocation jointly for the cellular and D2D multicast communications. Based on the channel allocation, optimal power solution is in a closed form and achieved by searching from a finite set and the interference between cellular and D2D multicast communication is coordinated. The simulation results show that the proposed method can not only ensure the quality of services (QoS), but also improve the system throughput.

Interference-limited Resource Allocation in Cognitive Radio Networks with Primary User Protection.

  • Mui, Nguyen Van;Hong, Choong-Seon
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(A)
    • /
    • pp.352-354
    • /
    • 2011
  • The performance of multihop cognitive radio networks (CRN) can be improved significantly by using multiple channels in spectrum underlay fashion. However, interference due to the sharing of common radio channel and congestion due to the contention among those flows that share the same links become an obstacle to meet this challenge. How to control efficiently congestion and allocate power optimally to obtain a high end-to-end throughput is a key objective in this work. We reexamined the Network Utility Maximum (NUM) problem with a new primary outage constraint and proposed a novel resource allocation strategy to solve it effectively and efficiently.

Link Scheduling and Channel Assignment in Multi-channel Cognitive Radio Networks: Spectrum Underlay Approach

  • Nguyen, Mui Van;Hong, Choong-Seon
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(D)
    • /
    • pp.300-302
    • /
    • 2012
  • In this paper, we investigate the performance of multi-channel cognitive radio networks (CRNs) by taking into consideration the problem of channel assignment and link scheduling. We assume that secondary nodes are equipped with multiple radios and can switch among multiple channels. How to allocate channels to links and how much power used on each channel to avoid mutual interference among secondary links are the key problem for such CRNs. We formulate the problem of channel assignment and link scheduling as a combinatorial optimization problem. Then, we propose a the optimal solution and show that it converges to maximum optimum in some iterations by using numerical results.

Statistically Controlled Opportunistic Resource Block Sharing for Femto Cell Networks

  • Shin, Dae Kyu;Choi, Wan;Yu, Takki
    • Journal of Communications and Networks
    • /
    • 제15권5호
    • /
    • pp.469-475
    • /
    • 2013
  • In this paper, we propose an efficient interference management technique which controls the number of resource blocks (or subcarriers) shared with other cells based on statistical interference levels among cells. The proposed technique tries to maximize average throughput of a femto cell user under a constraint on non-real time control of a femto cell network while guaranteeing a target throughput value of a macro cell user. In our proposed scheme, femto cells opportunistically use resource blocks allocated to other cells if the required average user throughput is not attained with the primarily allocated resource blocks. The proposed method is similar to the underlay approach in cognitive radio systems, but resource block sharing among cells is statistically controlled. For the statistical control, a femto cell sever constructs a table storing average mutual interference among cells and periodically updates the table. This statistical approach fully satisfies the constraint of non-real time control for femto cell networks. Our simulation results show that the proposed scheme achieves higher average femto user throughput than conventional frequency reuse schemes for time varying number of users.

Joint Beamforming and Power Splitting Design for Physical Layer Security in Cognitive SWIPT Decode-and-Forward Relay Networks

  • Xu, Xiaorong;Hu, Andi;Yao, Yingbiao;Feng, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권1호
    • /
    • pp.1-19
    • /
    • 2020
  • In an underlay cognitive simultaneous wireless information and power transfer (SWIPT) network, communication from secondary user (SU) to secondary destination (SD) is accomplished with decode-and-forward (DF) relays. Multiple energy-constrained relays are assumed to harvest energy from SU via power splitting (PS) protocol and complete SU secure information transmission with beamforming. Hence, physical layer security (PLS) is investigated in cognitive SWIPT network. In order to interfere with eavesdropper and improve relay's energy efficiency, a destination-assisted jamming scheme is proposed. Namely, SD transmits artificial noise (AN) to interfere with eavesdropping, while jamming signal can also provide harvested energy to relays. Beamforming vector and power splitting ratio are jointly optimized with the objective of SU secrecy capacity maximization. We solve this non-convex optimization problem via a general two-stage procedure. Firstly, we obtain the optimal beamforming vector through semi-definite relaxation (SDR) method with a fixed power splitting ratio. Secondly, the best power splitting ratio can be obtained by one-dimensional search. We provide simulation results to verify the proposed solution. Simulation results show that the scheme achieves the maximum SD secrecy rate with appropriate selection of power splitting ratio, and the proposed scheme guarantees security in cognitive SWIPT networks.

셀룰러 네트워크에서 언더레이 기반의 단말간 직접통신을 위한 스케쥴링 방법 (Scheduling Scheme for Underlay-based D2D Direct Communications in Cellular Networks)

  • 반태원
    • 한국정보통신학회논문지
    • /
    • 제19권12호
    • /
    • pp.2800-2804
    • /
    • 2015
  • 최근, 단말간 직접 통신에 대한 관심이 높아지면서 이에 대한 활발한 연구가 진행되고 있다. 본 논문에서는 셀룰러 이동통신 네트워크에서 단말간 직접 통신을 지원할 수 있는 알고리즘에 대하여 연구하였다. 먼저, 셀룰러 이동통신 네트워크에서 상향 링크 주파수 자원을 활용하여 이동통신 서비스와 단말간 직접 통신을 동시에 제공할 경우 이론적으로 최대의 전송율을 얻을 수 있는 최적 방식을 제시하였다. 그리고, 최적 방식 대비 복잡도를 획기적으로 절감할 수 있는 스케쥴링 알고리즘을 제안하고, 컴퓨터 시뮬레이션을 통하여 성능을 분석하였다.