• 제목/요약/키워드: Underground water table

Search Result 41, Processing Time 0.031 seconds

Effects of Hydrological Condition on the Coupled Thermal-Hydrological-Mechanical Behavior of Rock Mass Surrounding Cavern Thermal Energy Storage (암반 공동 열에너지저장소 주변 암반의 수리적 조건에 따른 열-수리-역학적 연계거동 분석)

  • Park, Jung-Wook;Rutqvist, Jonny;Lee, Hang Bok;Ryu, Dongwoo;Synn, Joong-Ho;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.25 no.2
    • /
    • pp.168-185
    • /
    • 2015
  • The thermal-hydrological-mechanical (T-H-M) behavior of rock mass surrounding a large-scale high-temperature cavern thermal energy storage (CTES) at a shallow depth has been investigated, and the effects of hydrological conditions such as water table and rock permeability on the behavior have been examined. The liquid saturation of ground water around a storage cavern may have a small impact on the overall heat transfer and mechanical behavior of surrounding rock mass for a relatively low rock permeability of $10^{-17}m^2$. In terms of the distributions of temperature, stress and displacement of the surrounding rock mass, the results expected from the simulation with the cavern below the water table were almost identical to that obtained from the simulation with the cavern in the unsaturated zone. The heat transfer in the rock mass with reasonable permeability ${\leq}10^{-15}m^2$ was dominated by the conduction. In the simulation with rock permeability of $10^{-12}m^2$, however, the convective heat transfer by ground-water was dominant, accompanying the upward heat flow to near-ground surface. The temperature and pressure around a storage cavern showed different distributions according to the rock permeability, as a result of the complex coupled processes such as the heat transfer by multi-phase flow and the evaporation of ground-water.

Characteristics of Quality and Flow of Water Resources at Palaces in Seoul Metropolitan (서울 시내 궁궐 수원의 수질과 유동 특성)

  • Naranchimeg., B;Lee, Jae-Min;Woo, Nam-C.;Kim, Youn-Tae;Lee, Kang-Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.2
    • /
    • pp.61-76
    • /
    • 2011
  • This study was objected to provide suggestions for best management practices to restore the cultural and historical values of the wells in Palaces as well as their water qualities. Water resources in the five Palaces in Seoul Metropolitan, including Gyeongbokgung, Changdeokgung, Changgyeonggung, Jongmyo Shrine, and Deoksugung, were surveyed for their physical flows and chemical compositions from April to July in 2010. Ground waters in most wells were found at depths within 5 m from the ground surface, showing typical water-table aquifer systems. Hydraulic gradients indicate water resources in Gyeongbokgung, Changdeokgung, and Changgyeonggung flowing toward south, and toward east in Deoksugung area. Especially, water-level fluctuation data at S-10 in Deoksugung implied the influence of groundwater discharge facility. In Jongmyo Shrine, water was not detected in wells, indicating the water level was lower than the well depth. Based on the water chemistry and stable isotope analyses, water resources and their qualities appeared to be formed by the water-rock interaction along the groundwater paths. S-10 (Deoksugung) and S-14 (Changgyeonggung) samples were contaminated with nitrate ($NO_3$) in levels of higher than Korean drinking water standard, 10 mg/L as $NO_3$-N, but once in four sampling campaigns. In the situation that water resources in Palaces still maintain natural characteristics, the materials that will be used for the restoration and improvement of the Palace water supplies should be carefully selected not to disturb the natural integrity. In addition, because the wells are located in the center of metropolitan area, a systematic monitoring should be applied to detect and to manage the potential impacts of underground construction and various pollution sources.

Development of Riverbank Filtration Water Supply and Return System for Sustainable Green House Heating and Cooling (지속가능 온실 냉난방을 위한 강변여과수 취수 및 회수시스템 개발)

  • Cho, Yong;Kim, Dae-Geun;Kim, Hyoung-Soo;Moon, Jong-Pil
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.2
    • /
    • pp.20-29
    • /
    • 2012
  • The green house on the waterfront is air-conditioned by a water-source heat pump system with riverbank filtration water. In order to supply riverbank filtration water in alluvium aquifer, the riverbank filtration facility for water intake and recharge, two pumping wells and one recharge well, has been constructed. The research site in Jinju, Korea was chosen as a good site for riverbank filtration water supply by the surface geological survey, electrical resistivity soundings, and borehole surveys. In the results of two boreholes drilling at the site, it was revealed that the groundwater table is about 3 m under the ground, and that the sandy gravel aquifer layer in the thickness of 6.5 m and 3.5 m occurs at 5 m and 7 m in depth below the ground level respectively. To prevent the recharge water from affecting the pumped water which might be used as heat source or sink, the distance between pumping and recharge wells is designed at least 70 m with a quarter of recharged flow rate. It is predicted that the transfer term, the recharge water affects the pumping well, is over 6 months of heating season. Hydrogeological simulation and underground water temperature measurement have been carried out for the pumping and recharge well positions in order to confirm the capability of sustainable green house heating and cooling.

Application of kriging approach for estimation of water table elevation (Kriging 기법을 이용한 지하수위 분포 추정)

  • Park, Jun-Kyung;Park, Young-Jin;Wye, Yong-Gon;Lee, Sang-Ho;Hong, Chang-Soo;Choo, Suk-Yeon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.3
    • /
    • pp.217-227
    • /
    • 2002
  • Geostatistical methods were used for the groundwater flow analysis on the ${\bigcirc}{\bigcirc}$ tunnel area. Linear regression analysis shows that the topographic elevation and ground water level of this area have very high correlation. Groundwater-level contour maps produced by ordinary kriging and cokriging have little differences in mountain areas. But, comparing two maps on the basis of an elevation contour map, a groundwater-level contour map using cokring is more accurate. Analyzing the groundwater flow on two groundwater-level contour maps, the groundwater of study area flows from the north-west mountain areas to near valleys, and from the peak of the mountain to outside areas. In the design steps, the groundwater-level distribution is reasonably considered in the tunnel construction area by cokriging approach. And, geostatistics will provide quantitative information in the unknown groundwatrer-level area.

  • PDF

Convergence-confinement method of a tunnel with the consideration of seepage forces (침투력을 고려한 터널의 내공변위 제어 미케니즘)

  • Lee, In-Mo;Yoo, Seung-Youl;Nam, Seok-Woo;Shin, Young-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.3
    • /
    • pp.187-195
    • /
    • 2005
  • When a tunnel is excavated below groundwater table, the groundwater flow occurs towards the tunnel resulting in the seepage pressure. In this paper, the effect of groundwater flows on the behavior of shotcrete lining installed between ground-liner interfaces was studied considering permeability ratio between the ground and the shotcrete into account. Three-dimensional coupled finite element analysis was performed for this assessment. Seepage forces will seriously affect the shotcrete behavior since arching phenomena do not occur in seepage forces. A parametric study was conducted on the various tunnelling situations including interfacial properties between ground and shotcrete lining, the shape of tunnel cross-section and the thickness of liner, etc. Moreover, the convergence-confinement method (CCM) of a NATM tunnel considering seepage forces was proposed. The result showed that the more water tight is the shotcrete, the smaller is the convergence and the larger is the internal pressure. Therefore, the watertight fiber-reinforced shotcrete is found to be even more advantageous when used in under water tunnel.

  • PDF

A Study on the Analysis of the Relaxation Area and the Improvement Effect of the Ground by Road Subsidence (지하연속벽 배면 도로의 지반침하에 따른 이완영역분석방법과 지반 보강 효과검증에 관한 연구)

  • Lee, Hyoung Kyu;Lee, Yong-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.1
    • /
    • pp.29-41
    • /
    • 2021
  • Although underground works are essential to use underground spaces in urban areas efficiently, various damages caused by constructions have often occurred, making them major social problems. Since 2018, it is stipulated in the Special Act on Underground Safety Management that appropriate construction methods must be used in the design stage to prevent various damage cases. This Special Act includes establishing an area subject to underground safety impact assessment, analysis of ground and geological status, review of effects caused by changes in groundwater, review of ground safety, and establishment of measures to secure underground safety. This study area consists of various strata in order of landfill, sedimentary silt, sedimentary sand, sedimentary gravel, weathering zone, and foundation rock. Also, the slurry wall, a highly rigid underground continuous wall, was chosen as a construction method to consider high water table distribution and minimize the influence of the surroundings in this area. However, ground subsidence occurred on the road nearby in December 2019 due to the inflow of loosening soil to the construction area. Thus, several types of site investigations were conducted to suggest an appropriate analysis method and to find out loosed ground behavior and its area for the subsided site. As a result, new design soil properties were re-calculated, and the reinforcement measures were proposed through analytical verification.

A study on landslide charateristics by using the shear strength of the interface of rock and soil (암과 흙 경계면에서의 전단강도를 이용한 산사태 특성 연구)

  • Lee, Su-Gon;Sun, Gun-Kyu;Lee, Chun-Young;Kim, Jae-Heun;Lee, Chang-No
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.606-613
    • /
    • 2004
  • One of the major forces that causes landslide is the amount of underground water resulted from rainfall and shear strength. As a result of close study on the landslide area affected by typoon Rusa it is observed that many landslides took place at the interface of rock and soil. Based on this observation that shear strength at the interface played a great role in landslide of the hilly area, two shear strengths were measured on different places, one at the interface between rocks and soil and the other just on soil. The two values thus derived were compared and used to review the safety factor for the hilly areas already collapsed. Back analysis was also used to calculate the ground water table according to the different rock types at the time when degradation happened.

  • PDF

Measurements and analysis of load sharing between piles and raft in a pile foundation in clay

  • Watcharasawe, Kongpop;Jongpradist, Pornkasem;Kitiyodom, Pastsakorn;Matsumoto, Tatsunori
    • Geomechanics and Engineering
    • /
    • v.24 no.6
    • /
    • pp.559-572
    • /
    • 2021
  • This research presents the monitoring results and their interpretation on load sharing of the pile foundation during the construction of a high-rise (124 m in height) building in Bangkok, in soft clayey ground. Axial forces in several piles, pore water pressure and earth pressures beneath the raft in a tributary area were monitored through the construction period of the building. The raft of the pile foundation in soft clayey ground can share the load up to 10-20% even though the foundation was designed using the conventional approach in which the raft resistance is ignored. The benefit from the return of ground water table as the uplift pressure is recognized. A series of parametric study by 3D-FEA were carried out. The potential of utilizing the piled raft system for the high-rise building with underground basement in soft clayey ground was preliminarily confirmed.

Experiment for Various Soils on Economic Duty of Water in Paddy Fields (각종토성별 경제적용수량 결정시험연구)

  • Hwang, Eun
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.11 no.1
    • /
    • pp.1561-1579
    • /
    • 1969
  • In Korea, the duty of water in paddy fields was measured at the Agricultural Experimental Station in Suwon about 60 years ago. After that time some testing has been made in several places, but the key points in its experiment were the water depth of evapo-transpiration. Improved breeds, progress in cultivation and management techniques as well as development of measuring apparatus in recent years have necessitated the review of the duty of water in paddy fields. The necessity of reviewing the conventional methods has become even more important, as no source of information has been made available through survey of water utilization on a soil use basis which requires data on peculiar features of the water depth of evapo-transpiration. For example, the duty of water in paddy field is largely affected by the water depth of evapo-transpiration in connection with the wetted paddy field, whereas in connection with the normal paddy fields without this characteristic the vertical percolation become the predominant factor in measuring the decreasing depth of water. Therefore, it becomes important. that not only the water depth of evapotranspiration but also the vertical percolation process should also be observed in order to arrive at a realistic conclusion. As the vertical percolation has aclose relationship to the height of the underground water, the change of the latter can be measured. As the conclusion of this experiment, the following subjects are indicated. 1. In order to determine the economic duty of water in paddy fields on a basis of varying soil features, the varying soil features in the benifited area should be investigated thoroughly. The water depths of evapo-transpiration(ET) ratio to evaporation in the evaporator(V) on a basis of the varying soil features are as follows: clay loam ET/V = 1.11, loam ET/V = 1.64, sandy loam ET.V = 1.63 2. The decreasing depth of water consists of the water depth of evapotranspiration, the vertical per colation and the percolation of foot path. Among these three, the percolation of foot path can be utilized again. 3. As the result of this experiment, it shows the decreasing depth of water as follows. clay loam 9.3 mm/day, loam 13.5mm/daty, sandy loam 15.3mm/day 4. On a basis of the varying soil features and the height of the underground water, the vertical percolation varies. 5. The change of the vertical percolation on a basis of the varying soil features shows as follows: clay loam $1{\sim}2$ mm/day, loam $2{\sim}3$mm/day, sandy loam $3{\sim}4$mm/day 6. The level of the underground water changes sensibly by priority of clay loam, loam, sandy loam. When it rains, the level of the underground water rises fast and falls down slowly. 7. The level of the underground water changes within the scope of 25cm 8. The transpiration ratio is given in table 8 and their value are as follows: clay loam 168.8, loam 255.6, sandy loam 272.5

  • PDF

A Numerical Analysis: Effects of Hydraulic Characteristics of a Hazardous Zone on the Face Stability in Subsea Tunnelling (해저터널 시공중 문제구간의 수리적 특성이 막장의 안정성에 미치는 영향에 관한 수치해석적 연구)

  • Hong, Eun-Soo;Park, Eui-Seob;Shin, Hee-Soon;Kim, Hyung-Mok;Ryu, Dong-Woo
    • Tunnel and Underground Space
    • /
    • v.18 no.5
    • /
    • pp.366-374
    • /
    • 2008
  • Tunnelling under water table induces many geotechnical problems because of groundwater. In subsea tunneling, reduction of face stability can induce flooding in the vicinity of a fracture zone characterized by high permeability and high water pressure. In this study, the effects of high water pressure on the stability of a tunnel face in a limited zone with high permeability(hazardous zone) are analyzed. On the basis of the 'advance core' concept, the seepage force acting on a hypothetical cylinder ahead of a tunnel face is modeled. This study focuses on the hydraulic behavior of the ground ahead of the tunnel face by three-dimensional steady-state seepage analyses. The impact of the hazardous zone on the seepage force and stability of the tunnel face are simulated and analyzed. In light of the analysis results, it is estimated that the distance from the tunnel face to the exterior boundary limit, which the seepage force significantly affects the stability of the tunnel face, of a hypothetical cylinder is approximately 5 times the tunnel radii. Despite the restrictive assumptions of this study, the results are highly indicative regarding the risks of hazardous zones.