• Title/Summary/Keyword: Underground permanent wall

Search Result 17, Processing Time 0.028 seconds

Improvement of Flexural Performance of Steel Diaphragm Walls With Interlocking Effects (인터록킹에 의한 강재지하연속벽의 휨성능 개선)

  • Lee, Jae Young;Hassan, Md Mehidi;Jeong, Gawn Woo;Han, Shin In;Jeong, Hae Chan;Kim, Doo Kie
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.6
    • /
    • pp.365-372
    • /
    • 2024
  • According to the recently revised seismic design standards, seismic design of underground structures is required. Concrete underground outer walls are installed separately from temporary earth retaining walls as permanent underground outer walls. This raises issues of constructability, economy, and space narrowness. Therefore, a steel underground continuous wall is developed to promote construction efficiency, safety, and economy by introducing the off-site construction (OSC) method of underground structures. The steel underground continuous wall will be used as a permanent underground continuous wall along with the temporary earth retaining wall. To this end, it must satisfy structural performance equivalent to or higher than the concrete underground outer wall. The integrity and in-plane shear resistance performance between single panel members must be satisfied to be used as a permanent wall. The interlocking effect through geometric bonding is intended to enhance the bonding effect between these members. Therefore, trapezoidal members were developed, and bending performance tests and analyses of each member were performed to confirm the structural bending performance of these members. The bending performance improvement effect of the combined multiple members was confirmed. As a result, it was confirmed that the integration of members and structural performance was improved due to the interlocking effect of the absence of joints. The seismic design analysis of the demonstration site was performed with these developed members, and it was confirmed that the structural performance was equivalent to or higher than that of the existing RC underground continuous wall. As a result, it was confirmed that the steel underground continuous wall can be used as a permanent underground wall together with the temporary earth retaining wall.

Design Case Study of Permanent Excavation Wall Using Soil Nailing System (쏘일네일링 공법을 적용한 영구 지하굴착 벽체의 설계사례 연구)

  • Park, Si-Sam;Lee, Je-Man;Yoo, Chan-Ho;Kim, Hong-Taek
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.84-91
    • /
    • 2005
  • In case of soil nailing system, there have been many attempts to expand into slope and temporary earth retaining system stabilization method since the first ground excavation earth retaining system construction in 1993. Recently, jointing wall, underground wall of buildings and excavation earth retaining wall, construction were increasingly applied for effective utilization of the limited underground space and land application maximized. However, the application of joining wall into retaining wall or building by temporary soil nailing system and design of permanent wall were performed by using Rankine earth pressure theory without considering the distribution of earth pressure in the soil nailing. In this study was performed to introduce the design case by 'Two-Body Translation mechanism (TBTM)' to be able to consider distribution of earth pressure in the soil nailing when designing the permanent jointing wall using soil nailing system for effective utilization of ground space. Also, this study attempts to evaluate the earth pressure change, decreasing effect of wall displacement and increasing effect of stability when advanced soil nailing system is constructed using $FLAC^{2D}$ ${\nu}er.$ 3.30 program and 'Two-Body Translation mechanism'.

  • PDF

Development of Struts for Soil Shuttering as a Permanent System (구조물 겸용 흙막이 스트러트 공법)

  • Hong Won-ki;Kim Sun-kuk;Kim Hee-Chul
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.3 s.19
    • /
    • pp.71-78
    • /
    • 2004
  • In conventional method of supporting soil shuttering wall during excavation a system of struts and wales to provide cross-lot bracing is common in trench excavations and other excavations of limited width. This method, however, becomes difficult and costly to be adopted for large excavations since heavily braced structural systems are required. Another expensive and unsafe situations are expected when temporary struts must be removed for the construction of underground structures. This paper introduces innovative strut systems which can be used as permanent underground structures after its role as brace system to resist earth pressure during excavation phase. Underground structural system suggested from architect is checked against the soil lated pressures before the analysis of stresses developed from gravity loads. In this technology, named SPS(Struts as Permanent System), retaining wall is installed first and excavation proceeds until the first level of bracing is reached. Braces used as struts during excavation will serve as permanent girders when buildings are in operation. Simultaneous construction of underground and superstructure can proceeds when excavation ends with the last level of braces being installed. In this paper, construction sequence and the calculation concept are explained in detail with some photo illustrations. SPS technology was applied to three selected buildings. One of them was completed and two others are being constructed Many sensors were installed to monitor the behavior of retaining wall, braces as column in terms of stress change and displacement. Adjacent ground movement was also obtained. These projects demonstrate that SPS technology contributes to the speed as well as the economy involved in construction.

Strut as a Permanent System using Composite Beams (층고절감형 거더를 이용한 영구 스트러트 공법)

  • Hong, Won-Kee;Park, Seon-Chee;Kim, Jin-Min;Lee, Ho-Chan
    • KIEAE Journal
    • /
    • v.8 no.1
    • /
    • pp.87-92
    • /
    • 2008
  • Sheathing work used for excavation in a crowded downtown is generally a temporary strut method using H-piles and sheathing wall includes lagging, CIP, SCW or slurry wall. A temporary strut serving the support for sheathing wall acts to resist the earth pressure, but it shall be removed when installing the underground structure members. A traditional temporary strut might cause the stress imbalance of the sheathing wall when it is demolished, resulting in time extension and the risk of collapse. A traditional temporary strut method thus needs to be improved for schedule and cost reduction, risk mitigation and for preparation for potential civic complaint. A permanent strut method doesn't require installing and demolishing the temporary structure that will lead to reducing the time and cost and the structural risk during the demolition process. And given the girder, the part of the underground structure, serves the role of strut, it can secure the wider interval compared to the traditional method, which enables to secure the wider space for the convenience of excavation as well as enhance the constructability and efficient site management. The thesis was intended to study the composite girder designed to use the strut as permanent structure so as to reduce the excavation and floor height.

An Experimental Study on Behavior Characteristic of the Soil Nailed Wall with Facing Stillness (전면벽체 강성에 따른 쏘일네일링 벽체의 거동특성에 관한 실험적 고찰)

  • 김홍택;강인규;권영호;조용훈
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.279-286
    • /
    • 2002
  • Recently, there are many attempts to expand a temporary soil nailing system into a permanent wall due to the advantage of soil nailing system, that is efficient and economic use of underground space and decreasing the total construction cost. However, the proper design approach of a permanent soil nailing system has not been proposed by now in Korea. Permanent soil nailing system which utilizes precast concrete walls for the facing of soil nailing system Is already used in many countries. In general, the cast-in-place concrete facings or rigid walls were constructed in bottom-up way after construction of soil nailing walls finished preliminarily In this paper, various laboratory model tests have been carried out to investigate the failure mode, behavior characteristics, and tensile force at nail head in each load level in respects of the variation of stiffness of the facing.

  • PDF

Stability Analysis of Upper Structures by Soil Grouting (지반 그라우팅에 의한 상부구조물의 안전성 분석)

  • Hwang, Chulsung
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.4
    • /
    • pp.58-65
    • /
    • 2013
  • Transportation and further expansion of social infrastructure was needed along the development of urbanization and population concentration. To use the underground space due to the lack of availability of land, it is inevitable to intersect between present structure and tunnel during construction. Soil grouting is one of the ground improvement methods to reinforce weak soil around the underground structures by injection of grouting liquid. Some of central columns of an upper structure are damaged during injection of grouting liquid by injection pressure. To investigate and improve the stability of the tunnel, three dimensional analysis are performed with full construction stages which includes the construction of present underpass, damaging columns of the underpass, reinforcing the columns by H-pile and shear walls, and excavation and construct tunnel. The arrangement of grouting holes such as curtain and horizontal type affects largely to the stability of upper structure and horizontal arrangement diminish the shear forces which is the cause of damage of central columns. The liquid injection type of reinforcement for tunnel is not recommended while the presence of upper structure with columns. Wall type reinforcing is utilize for permant support of upper structures which is affected by grouting injection pressure. H-pile is utilize for temporary support, but not for permanent since the sharing of shear forces is not much to shear wall during tunnel construction.

Applicability examinations of induced drainage system for reduction of uplift pressure in underpass structures: Numerical study (지하차도 부력저감을 위한 유도배수공법의 적용성 검토: 수치해석적 연구)

  • Jo, Seon-Ah;Jin, Gyu-Nam;Sim, Young-Jong;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.2
    • /
    • pp.123-134
    • /
    • 2013
  • Urban underground structures at low ground elevations (i.e. shallow substructures) unlike typical tunnel structures are subjected to low overburden and high water pressures. This often causes the underground structures to become damaged. Various conventional methods for the urban underpass structures such as dead weight increasement, round anchors, and tension piles, are significantly conservative and provok concerns about the costly, time-consuming installation process. Recently, permanent drainage system becomes to widely use for supplementing the conventional method's shortcomings, but, it is applied without the considerations for ground conditions and water table. In this study, therefore, numerical analyses are performed with various parameters such as groundwater level, wall height, and ground conditions in order to establish design guidelines for induced drainage system which is a kind of the permanent drainage method constructed at the Y-area. According to the numerical results, the induced drainage system is very effective in reducing the uplift pressure that acts on the base of underpass structures.

A Case Study on the Top-Down Methods Performed in the Excavation Works of Domestic Downtown (국내 도심지 굴착공사에 적용된 Top-Down 공법의 시공사례 연구)

  • Chung, Jeeseung;Park, Sukk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.2
    • /
    • pp.5-19
    • /
    • 2017
  • Underground excavation for building construction in Korea is changing from conventional support method (Strut, Ground anchor) to inside permanent support method by stability, economic, circumstances around excavation and etc. This study was selected the sites of Top-down, New Top-down, S.P.S, S.T.D and B.R.D in general use. This study was compared and analyzed a construction cost and period between aforementioned methods and conventional support method. Also, this study was confirmed the stability of temporary retaining wall by analysis for measurement data under construction. As a result, this study can grasp that most improved permanent support method is excellent in economic and constructability than conventional support method in case of deep excavation and rapid appearance of bedrock.

Evaluation of Shear Performance for CSB (Confined Socket Bolt) Shear Connector (CSB (Confined Socket Bolt) 전단연결재의 전단 성능 평가 )

  • Seung-Hyeon Hwang;Ju-Hyun Mun;Jong-Kook Hong;Jong-Cheol Jeon;Jae-Il Sim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.2
    • /
    • pp.8-16
    • /
    • 2023
  • This study evaluated a shear capacity of confined socket-bolt (CSB) shear connector developed for utilizing cast in placed pile (CIP) as a permanent underground wall. The push-out tests were performed in the specimens with different CIP types, CSB shear connector types, L/d, and concrete compressive strengths of concrete pile, and with or without waterproofing at interfaces between CIP and underground wall. Test results showed that the specimens with a H-shaped pile were fractured in the CSB shear connector, while the fracture concentrated in the concrete part of the specimens with a reinforced concrete pile was alleviated as the compressive strength of the concrete pile increased, resulting in the severe fracture of CSB shear connector. The maximum shear capacities of the specimens with high strength bolts and reinforcing bars used as CSB shear connector were approximately 1.22 and 1.20 times higher than those of the specimens with a H-shaped pile, respectively, and 1.10 and 1.16 times higher than those of the specimens with a reinforced concrete pile, respectively. Meanwhile, the maximum shear capacity was not significantly affected by the embedding length of the CSB shear connector and overlapping length of reinforcing bar. The predicted shear capacities calculated from the KDS standards were lower than the measured values of all specimens tested in this study.

A Case Study on the Large Scaled Load Test of Soil Nailed Walls (쏘일네일링 벽체에 대한 대형파괴재하시험 사례)

  • Kang, In-Gyu;Ryu, Jeong-Su;Kwon, Young-Ho;Lee, Seung-Hyun;Park, Shin-Young
    • 기술발표회
    • /
    • s.2006
    • /
    • pp.135-145
    • /
    • 2006
  • Soil nailing systems are generally many used in underground excavations and reinforcements of slopes since the first construction as a temporary retaining wall in 1993, Korea. In recently, they are many attempts to expand the permanent reinforcements of slopes However, experimental studies related to soil nailing systems are insufficient Specially, there are no researches related in the large scaled load tests of soil nailed walls in Korea In this study, a case study on the large scaled load tests of soil nailed walls is introduced and the behavior characteristic of them is investigated Also, they are proposed allowable deformation corresponding to the serviceability limit of soil nail walls and ultimate deformation corresponding to the collapse state of the walls. These results can be applied to the maintenance management of soil nailed walls And analysis on the required minimum factor of safety of soil nailed walls using the relation curve of load ratio and deformation ratio are carried out

  • PDF