DOI QR코드

DOI QR Code

Applicability examinations of induced drainage system for reduction of uplift pressure in underpass structures: Numerical study

지하차도 부력저감을 위한 유도배수공법의 적용성 검토: 수치해석적 연구

  • 조선아 (한국과학기술원 건설 및 환경공학과) ;
  • 진규남 (한국토지주택공사 토지주택연구원) ;
  • 심영종 (한국토지주택공사 토지주택연구원) ;
  • 조계춘 (한국과학기술원 건설 및 환경공학과)
  • Received : 2013.03.05
  • Accepted : 2013.03.20
  • Published : 2013.03.28

Abstract

Urban underground structures at low ground elevations (i.e. shallow substructures) unlike typical tunnel structures are subjected to low overburden and high water pressures. This often causes the underground structures to become damaged. Various conventional methods for the urban underpass structures such as dead weight increasement, round anchors, and tension piles, are significantly conservative and provok concerns about the costly, time-consuming installation process. Recently, permanent drainage system becomes to widely use for supplementing the conventional method's shortcomings, but, it is applied without the considerations for ground conditions and water table. In this study, therefore, numerical analyses are performed with various parameters such as groundwater level, wall height, and ground conditions in order to establish design guidelines for induced drainage system which is a kind of the permanent drainage method constructed at the Y-area. According to the numerical results, the induced drainage system is very effective in reducing the uplift pressure that acts on the base of underpass structures.

도시지역에 주로 건설되는 지하차도는 기존의 터널과 달리 지표면에 근접한 지반에 시공되어 지하수의 양압력에 의한 구조물 부상 및 손상이 발생할 수 있다. 도심지 지하차도의 기존 설계방법(사하중 증가 또는 영구앵커 등의 부력 대처공법)은 지나치게 안전측인 보수적 설계를 수행하고 있어 시공기간 및 경제적 비용 증가를 초래한다. 최근 이를 보완하는 공법으로 영구배수공법 사용이 증가하고 있으나 대상 토질과 지하수 등을 고려한 적절한 분석과정 없이 선정되는 실정이다. 따라서 본 연구에서는 최근 Y지역에 설치되는 영구배수공법의 일종인 유도배수공법을 대상으로 지반공학적 관점에서 합리적인 설계체계를 수립하기 위해 지하수위 변화, 지하차도 옹벽 높이, 기초지반 조건 등 다양한 매개변수에 대한 수치해석을 수행하였다. 본 연구 결과로부터 유도배수공법은 지하수에 의해 발생하는 양압력을 효과적으로 저감시킬 수 있음을 확인하였다.

Keywords

References

  1. Bae, G.J., Lee, G.P., Lee, S.W., Shin, H.S. (2006), "Evaluation of drain capacity in tunnel drainage system using drainboard", Tunnelling Technology, Vol. 8, No. 1, pp. 13-20.
  2. Chang, DT.T., Chang, J.C.I., Tung, R.S.T, Hou, H.C. (2000), "New method to stabilize the uplift pressure problem for raft foundations", Transportation Research Record, No. 1721, pp. 31-38.
  3. Chun, B.S., Yeoh, Y.H., Choi, J.K. (2000), "A case study on the vertical drainage system construction for resisting uplift of sub-structure", 2000 Korean Society of Civil Engineers (KSCE) Annual Conference, No. 2, pp. 523-526.
  4. Construction criteria for common utility tunnel (2006), Ministry of Land, Transport and Maritime Affairs.
  5. Hsu, S.C., Chang, C.M. (2007), "Pullout performance of vertical anchors in gravel formation", Engineering Geology, Vol. 90, No. 1-2, pp. 17-29. https://doi.org/10.1016/j.enggeo.2006.11.004
  6. Itasca. (2002), Fast Lagrangian Analysis of Continua (FLAC2D) v.4.0, Itasca Consulting Group.
  7. Jung, K.Y., Kim, J.Y., Kim, J.H., Moon, H.K. (2011), "A study for application plan of rational residual water pressure on the tunnel linings", Tunnelling Technology, Vol. 13, No. 6, pp. 463-499.
  8. Ko, O.Y., Kwon, O.C., Shim, J.K., Park, T.E. (2009), "A case study and analysis on the up-lift pressure treatment evaluation of underground installations for their efficient adoption", Journal of The Korea Institute of Building Construction, Vol. 9, No. 4, pp. 119-129. https://doi.org/10.5345/JKIC.2009.9.4.119
  9. Shin, J.H., Ahn, S.R., Shin, Y.S. (2005), "Pore water pressure development mechanism and sustainability of tunnel linings", 2005 Korean Society of Civil Engineers (KSCE) Annual Conference, Vol. 2005, No. 10, pp. 2958-2965.
  10. Shin, J.H., Choi, M.G., Kang, S.R., Nam, T.S. (2008), "A study on the flow behavior around shallow tunnels and its numerical modelling", Tunnelling Technology, Vol. 10, No. 1, pp. 37-47.
  11. Wong, I.H. (2001), "Methods of resisting hydrostatic uplift in substructures", Tunnelling and Underground Space Technology, Vol. 16, No. 2, pp. 77-86. https://doi.org/10.1016/S0886-7798(01)00037-2

Cited by

  1. Effects of the ground water level on the stability of an underpass structure considering the degree of surface imperviousness vol.18, pp.1, 2016, https://doi.org/10.9711/KTAJ.2016.18.1.095