• Title/Summary/Keyword: Underground excavation

Search Result 844, Processing Time 0.022 seconds

Analysis of drilling performance and shape for granite according to operating parameters of waterjet nozzles (복수의 워터젯 노즐 운용변수에 따른 화강암 천공성능 및 형상 분석)

  • Park, Jun-Sik;Cha, Hyun-Jong;Hong, Eun-Soo;Jun, Hyung-Woo;Oh, Tae-Min
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.589-604
    • /
    • 2021
  • Waterjets for rocks have various advantages of the non-contact and eco-friendly excavation using only water and abrasive. To overcome the problems (e.g., dust and noise occurrence) of the conventional drilling methods, waterjet excavation methods are broadly used. It is advantageous to operate a couple of nozzles in order to increase the waterjet excavation efficiency. When multiple nozzles are used, it is essential to analyze the excavation performance and shape according to the nozzle operation method. In this study, nozzle angle, horizontal distance between nozzles, and standoff distance were defined as nozzle operating parameters and the excavation performance and shape were analyzed. As a result of the experiment, when the nozzle angle and standoff distance are increased, the excavation depth is decreased and the effective depth tends to be increased. In addition, based on the experimental results, the excavation shape criteria required for nozzle insertion were proposed and optimal nozzle operating parameters were derived according to the criteria. This study result is expected to be used as useful basic research in the future development of multiple waterjet nozzles for rock drilling.

A Study on the Stability of Existing Subway Tunnel due to Construction of New Underpass (지하차도 건설에 따른 기존 지하철터널 안정성에 대한 연구)

  • Chung, Jee-Seung;Choi, Jae-Young;Lee, Jin-Hyuk
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.2
    • /
    • pp.57-63
    • /
    • 2016
  • Recently, subways in the city are formed a vast underground network which is interfered with construction when large-scale infrastructure will be planned to nearby existing subway tunnels. Researches have been restricted to estimate stability of existing subway tunnel due to adjacent excavation causued by small construction such as buildings. In this paper, OO underpass is planned on the top of existing subway tunnel, which will be need large-scale excavation, is selected as a subject of study. And the purpose of this study is to analyze the effects on existing subway tunnel due to excavation by stages on construction of underpass. The 3D-numerical analysis was performed by using the MIDAS/GTS program. The stability on existing subway tunnel caused by sequential excavation is analysed using numerical results. Based on the analysis, the excavation orders and reinforcement methods was suggested for stability of exiting subway tunnel.

Importance of Construction Sequence in Numerical Modeling for Underground Structure

  • Park, Yang-Hoo;Cho, Kook-Hwan
    • International Journal of Railway
    • /
    • v.9 no.1
    • /
    • pp.21-26
    • /
    • 2016
  • When excavation under existing structure is planned for a new construction project, the underpinning method is one of the most applicable construction methods. This study introduces a new modified underpinning method which is applied to construct a new subway line in Seoul Metropolitan. The new subway line was designed to pass underneath the existing subway line. Existing subway line carries about 2 million passengers daily, which is 33% of total passengers using subway in Seoul, and is the only circulation line in Seoul. Subway trains are passing 540 times through this section in a day. By applying a new underpinning method, the subway box structure of line is exposed 54m in the air supported by bearing piles. The proposed method was carefully monitored using heavy instrumentation system during construction. This study proposed and verified the application of the modified underpinning method, which can reduce construction period by 1.5 times and the construction cost by 1.2 times comparing with conventional method. The importance of considering construction sequence is investigated and verified by analyzed data non-considering construction sequence. The unexpected heaving which can bring up a dangerous situation for train running stability were measured, so this study shows that the upward movement has to be analyzed in designing process. As the use of underground space increases, the proposed method can be a good example of underground development.

An Assessment Pipe Damage Probability of High Pressure Underground Pipeline in Industrial Estate (산업단지 고압매설배관의 손상확률 평가)

  • Kim, jin-jun;Rhie, Kwang-Won;Choi, hun-ung;Choi, ji-hun
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.2
    • /
    • pp.9-16
    • /
    • 2019
  • The frequency of major accidents which has probability of occurrence at the high pressure underground pipeline of industrial estate such an Ulsan, Yeo-ju by the other construction such as an excavation work will be compared to city gas underground pipeline to derive the basic event by the FTA and present. Also, Observe and analyze the pipe damage impact factor such as an excavation frequency, patrol cycle. As a result, It contributes to the safety improvement of high pressure gas buried pipeline due to obtain importance and sensitivity of the pipe damge impact factors.

Development and performance evaluation of Machine Control Kit mountable to general excavators (일반 굴삭기 장착 가능한 머신 컨트롤 키트 개발 및 성능 평가)

  • K.S. Lee;K.S. Kim;J.B. Jeong;E.S. Pak;J.I. Koh;J.J. Park;S.H. Joo
    • Journal of Drive and Control
    • /
    • v.21 no.1
    • /
    • pp.31-37
    • /
    • 2024
  • In this study, to prevent accidents in underground facilities during excavation, we developed a Lv.3 automated control system that can be configured as an electronic control system without changing the existing hydraulic system in a general excavator and utilized digital map information of underground facilities. We aimed to develop a strategy to prevent accidents caused by operator error. To implement this, a real-time excavator bucket end position recognition and control system was developed through angle measurement of the boom, arm, and bucket using an electronic joystick, RTK-GPS, and angle sensors. In addition, excavators are large, machine-based equipment, and it is difficult to control overshoot due to inertia with feedback control using position recognition information of the bucket tip. Therefore, feed-forward control is used to calculate the moving speed of the bucket tip in real-time to determine the target position. We developed a technology that can converge and verified the performance of the developed system through actual vehicle installation and field tests.

암반절리와 시공단계를 고려한 지하 구조체의 해석

  • 김문겸;장정범
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.179-194
    • /
    • 1991
  • This paper explains outline of a behavior analysis program for underground structures, and its application to a tunnel problem. The program can deal with elasto-plastic behavior of medium and supporting structures, discontinuous behavior due to existing joint, creation and propagation of cracks. in-situ loading condition, and incremental behavior due to stepwise excavation, etc. The program also has additional capabilities such as graphic output of mesh, displacement pattern, stress condition, and safety factor contour, and automatic mesh generation during the excavation steps.

  • PDF

Deformation Characteristics and Determination of Deformation Modulus of Rocks around the Lower Gangway during Coal Mining Operation (석탄층 하반갱도 주위암반의 변형특성 및 변형계수 결정연구)

  • 이현주
    • Tunnel and Underground Space
    • /
    • v.2 no.2
    • /
    • pp.237-250
    • /
    • 1992
  • The cavities formed by the excavation of coal seam cause unstable within rock body, leading to large displacement around adjacent roadway. This displacement brings the closure of roadway and deformation of support. Therefore, it is necessary to understand and predict the deformation characteristics of roadway while coal seam is under excavation. In this study, the observed displacements are compared with the calculated ones through the analysis using Linear Boundary Element Mothod under the elastostatic conditions, in order to determine the virgin stress state and deformation modulus which affect the deformation characteristices.

  • PDF

Three-dimensional Stability Analysis for an Underground Disposal Research Tunnel (지하처분연구시설에 대한 3차원 터널 안정성 해석)

  • 권상기;조원진
    • Tunnel and Underground Space
    • /
    • v.14 no.3
    • /
    • pp.188-202
    • /
    • 2004
  • If an underground research facility for the validation of disposal concept is constructed in KAERI, it is expected to have a thick weathered zone and varying surface topology. In this study, the influence of different geological conditions, tunnel slope, tunnel size, and sequential excavation is investigated by 3D mechanical analysis using FLAC3D. Around the tunnel, it is not expected to develop any plastic zone and the maximum stress might be as high as 5 ㎫. The maximum compressive stress will be developed at about 20 m to e dead end of the tunnel. There is no difference on stress and displacement distributions between the cases with and without sequential excavation. It is expected to have stress release in the roof and floor after the excavation of the tunnel. There is no significant influence of weathered zone size, tunnel size, and tunnel slope on the stress and displacement distributions. The modeling for the intersection shows the minimum factor of safety is above 3, when the in situ stress ratio K is 3. From the study, it was possible to demonstrate that the small scale disposal research tunnel in KAERI will be mechanically stable.