• Title/Summary/Keyword: Underground Power Line

Search Result 176, Processing Time 0.027 seconds

Design of Submarine Cable for Capacity Extension of Power Line (전력선 용량증대를 위한 해저케이블 설계)

  • Son, Hong-Chul;Moon, Chae-Joo;Kim, Dong-Sub
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.77-84
    • /
    • 2022
  • A submarine power cable is a transmission cable for carrying electric power below the surface of the water. Recently, submarine cables transfer power from offshore renewable energy schemes to shore, e.g. wind, wave and tidal systems, and these cables are either buried in the seabed or lie on the ocean floor, depending on their location. Since these power cables are used in the extreme environments, they are made to withstand in harsh conditions and temperatures, and strong currents. However, undersea conditions are severe enough to cause all sorts of damage to offshore cables, these conditions result in cable faults that disrupt power transmission. In this paper, we explore the design criteria for such cables and the procedures and challenges of installation, and cable transfer splicing system. The specification of submarine cable designed with 3 circuits of 154kV which is composed of the existing single circuit and new double circuits, and power capacity of 100MVA per cable line. The determination of new submarine cable burial depth and cable arrangement method with both existing and new cables are studied. We have calculated the permission values of cable power capacity for underground route, the values show the over 100MW per cable line.

Analysis of Sequence Impedances of 345kV Cable Transmission Systems (실계통 345kV 지중송전선 대칭좌표 임피던스의 해석)

  • Choi, Jong-Kee;Ahn, Yong-Ho;Yoon, Yong-Beum;Oh, Sei-Ill;Kwa, Yang-Ho;Lee, Myoung-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.905-912
    • /
    • 2013
  • Power system fault analysis is commonly based on well-known symmetrical component method, which describes power system elements by positive, negative and zero sequence impedance. In case of balanced fault, such as three phase short circuit, transmission line can be represented by positive sequence impedance only. The majority of fault in transmission lines, however, is unbalanced fault, such as line-to-ground faults, so that both positive and zero sequence impedance is required for fault analysis. When unbalanced fault occurs, zero sequence current flows through earth and skywires in overhead transmission systems and through cable sheaths and earth in cable transmission systems. Since zero sequence current distribution between cable sheath and earth is dependent on both sheath bondings and grounding configurations, care must be taken to calculate zero sequence impedance of underground cable transmission lines. In this paper, conventional and EMTP-based sequence impedance calculation methods were described and applied to 345kV cable transmission systems (4 circuit, OF 2000mm2). Calculation results showed that detailed circuit analysis is desirable to avoid possible errors of sequence impedance calculation resulted from various configuration of cable sheath bonding and grounding in underground cable transmission systems.

Study on the Fire Risk Prediction Assessment due to Deterioration contact of combustible cables in Underground Common Utility Tunnels (지하공동구내 가연성케이블의 열화접촉으로 인한 화재위험성 예측평가)

  • Ko, Jaesun
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.1
    • /
    • pp.135-147
    • /
    • 2015
  • Recent underground common utility tunnels are underground facilities for jointly accommodating more than 2 kinds of air-conditioning and heating facilities, vacuum dust collector, information processing cables as well as electricity, telecommunications, waterworks, city gas, sewerage system required when citizens live their daily lives and facilities responsible for the central function of the country but it is difficult to cope with fire accidents quickly and hard to enter into common utility tunnels to extinguish a fire due to toxic gases and smoke generated when various cables are burnt. Thus, in the event of a fire, not only the nerve center of the country is paralyzed such as significant property damage and loss of communication etc. but citizen inconveniences are caused. Therefore, noticing that most fires break out by a short circuit due to electrical works and degradation contact due to combustible cables as the main causes of fires in domestic and foreign common utility tunnels fire cases that have occurred so far, the purpose of this paper is to scientifically analyze the behavior of a fire by producing the model of actual common utility tunnels and reproducing the fire. A fire experiment was conducted in a state that line type fixed temperature detector, fire door, connection deluge set and ventilation equipment are installed in underground common utility tunnels and transmission power distribution cables are coated with fire proof paints in a certain section and heating pipes are fire proof covered. As a result, in the case of Type II, the maximum temperature was measured as $932^{\circ}C$ and line type fixed temperature detector displayed the fire location exactly in the receiver at a constant temperature. And transmission power distribution cables painted with fire proof paints in a certain section, the case of Type III, were found not to be fire resistant and fire proof covered heating pipes to be fire resistant for about 30 minutes. Also, fire simulation was carried out by entering fire load during a real fire test and as a result, the maximum temperature is $943^{\circ}C$, almost identical with $932^{\circ}C$ during a real fire test. Therefore, it is considered that fire behaviour can be predicted by conducting fire simulation only with common utility tunnels fire load and result values of heat release rate, height of the smoke layer, concentration of O2, CO, CO2 etc. obtained by simulation are determined to be applied as the values during a real fire experiment. In the future, it is expected that more reliable information on domestic underground common utility tunnels fire accidents can be provided and it will contribute to construction and maintenance repair effectively and systematically by analyzing and accumulating experimental data on domestic underground common utility tunnels fire accidents built in this study and fire cases continuously every year and complementing laws and regulations and administration manuals etc.

A Consideration on 3-Phase Non-Loop, Multiple-Point Ground Method in 22.9[kV] CNCV Underground Cable Systems (22.9[kV] CNCV케이블 지중배전계통의 3상 비일괄 동심증성선 다중접지방식에 대한 이론적고찰)

  • Jeon, Myung-Su;Song, Joong-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.2
    • /
    • pp.85-93
    • /
    • 2008
  • In 22.9[kV]-y distribution systems, underground cables are provided with 3-wire loop multiple-point ground in which each coaxial-neutral line of the distribution cable lines(A, B, C phases) is 3-wire common grounded at every connecting section. In the underground cable distribution systems, circulating current flows in the coaxial-neutral lines and its magnitude amounts to about $40{\sim}50[%]$ load currents, even though loads are balanced. This paper presents a new ground method to overcome such a problem and a comprehensive analysis in tows of current capacity of power cables, induced voltage of cable sheath, and electromagnetic interference voltage from power cable lines.

Study on Simulation of Dust Diffusion at Open Pit Mines (노천광산의 발파분진 비산영역 예측에 관한 연구)

  • 김복윤;이상권;조영도;김임호
    • Tunnel and Underground Space
    • /
    • v.8 no.3
    • /
    • pp.194-199
    • /
    • 1998
  • This research was aimed to figure out the trend of dust diffusion at open pit limestone mine for assessing the environmental impacts on the high voltage power transmission line. It is rather easy to assess the dust generation and size distribution of limestone dust at the blasting site, but it is very hard to assess the expected area of dust diffusion and amount of dust fall by the distances from the dust source. In this research, a 3-dimensional fluid dynamic simulation software (3D-Flow) was used for analysing the above mentioned matters to assess the impacts to the insulators on the transmission tower by the blasting dust. It was verfied that the 3D-Flow is reliable tool for simulating dust movement, and the limestone dust is not much hazardous to the power transmission line.

  • PDF

Application of Guided Ultrasonic Wave Technology for Evaluation of Welding Part in Cooling Water Pipe (냉각수 배관 용접부 평가를 위한 유도초음파 기술의 적용)

  • Gil, D.S.;Ahn, Y.S.;Park, S.K.
    • Journal of Power System Engineering
    • /
    • v.14 no.5
    • /
    • pp.36-40
    • /
    • 2010
  • The ultrasonic guided wave propagates along with the given structure's wall direction. Because of this specific character, the ultrasonic guided waves arc used in many other fields. Especially, it can be readily utilized for nondestructive inspection of various structures that are made up of gas pipes, heat exchanger tubes, and thin plates. Further, the guided wave technology can be readily utilized when inspecting pipes or thin plates which pose high risk of the accident but for which the nondestructive inspection itself is impossible because it is difficult to get to them since they are coated or buried underground. In the other hand, conventional ultrasonic testing such as thickness gauging uses bulk waves and only tests the region of structure immediately below the transducer. As a result of the application about inlet and outlet cooling water line using guided wave test, we conformed that the overall corrosions were in the lower side of the 304.8 mm inlet valve and these corrosions were engaged in not locally but through the lower side of the valve line. In the near future, we can expect that the detectable defect size is smaller than before along with the development of the sensing technology.

Testing of Advanced Relaying and Design of Prototype IED for Power Transformer Protection (전력용 변압기 보호용 시제품 IED 설계와 개선된 기법의 시험)

  • Park, Chul-Won;Shin, Myong-Chul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.55 no.1
    • /
    • pp.6-12
    • /
    • 2006
  • A popular method used by primary protection for power transformer is current ratio differential relaying (RDR) with 2nd harmonic restraints. In modern power transformer due to the use of low-loss amorphous material, the 2nd harmonic component during inrush is significantly reduced. The higher the capacitance of the high voltage status and underground distribution, the more the differential current includes the 2nd harmonic component during internal fault. Thus the conventional method may not operate properly. This paper proposes an advanced relaying algorithm and the prototype IED hardware design and it's real-time experimental results. To evaluate performance of the proposed algorithm, the study is well constructed power system model including power transformer utilizing the EMTP software and the testing is made through simulation of various cases. The proposed relaying that is well constructed using DSP chip and microprocessor etc. has been developed and the prototype IED has been verified through on-line testing. The results show that an advanced relaying based prototype IED never mis-operated and correctly identified all the faults and that inrushes that are applied.

A Study on the Cause of the Fault on Underground Distribution Line (지중배전선로 고장요인에 관한 연구)

  • Jung, Jong-Yon;Seon, Sang-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.302_303
    • /
    • 2009
  • 지중배전선로 고장발생현황을 분석한 결과 설비별로는 케이블 고장이 가장 많았고, 그 다음으로 개폐기, 접속재, 변압기 순으로 고장이 많이 발생하였다. 원인별로 보면 일반인 과실과 자연열화에 의한 고장이 대부분을 차지하였다. 지중고장 유형 중 가장 많은 케이블 외상 고장은 인적 과실에 의한 고장으로 이와 같은 인적 과실에 의한 고장이 전체 지중고장의 50% 이상을 차지하며 케이블 및 접속재 열화고장 등 관리소홀에 의한 고장은 전체 지중고장의 20% 이상을 차지하였다. 인적 과실 및 관리소홀에 의한 고장은 천재지변과는 달리 설비관리 노력으로 충분히 감소시킬 수 있다. 지중고장을 감소시키기 위한 구체적인 방안으로는 선로굴착개소 순시 및 입회 철저, 굴착개소 관련 DB의 정확도 유지, 설비열화 진단 및 보강, 설비진단 신기술 개발 및 도입, 접속개소 시공품질 향상 등이 필요할 것으로 판단된다.

  • PDF

A Fault Effect to Induced Voltage of Gas Pipeline in Transmission Systems (송전계통에서 고장에 따른 Gas Pipeline 유도전압 분석)

  • Kim, Hyun-Soo;Rhee, Sang-Bong;Kim, Chul-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1720-1725
    • /
    • 2008
  • Because of the continuous increasing of energy consumption, metallic pipelines are widely used to supply services to customers such as gas, oil, water, etc. Most common metallic pipelines are underground and are now frequently being installed in nearby electric power lines. In recent years, buried gas pipeline close to power lines can be subjected to hazardous induction effects, especially during single line to ground faults. because it can cause corrosion and it poses a threat to the safety of workers responsible for maintenance. Accordingly, it is necessary to take into consideration for analysis of induced voltage on gas pipelines in transmission lines. This paper analyzed the induced voltage on the gas pipelines due to the 154kV transmission lines in normal case and in different faulty case conditions using EMTP (Electro-Magnetic Transients Program).

The Dielectric loss Properties of Mini-model Superconducting Cable (Mini-model 초전도 케이블의 유전손실 특성)

  • 김영석;곽동순;한철수;김해종;김동욱;김상현
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.10
    • /
    • pp.946-951
    • /
    • 2003
  • A high-Tc superconducting cable(HTS cable) is expected as an underground power line supplying the electrical power the densely populated city in future. The electrical insulation is very important for develop HTS cable system because it is operated a high voltage and in cryogenic temperature. We manufactured a mini-model cable and measured a tan$\delta$ of cable using schering bridge. The tan$\delta$ of PPLP was lower than that of Tyvek and Kraft at a given temperature, the tan$\delta$ of PPLP was 1.16${\times}$10-3. According to the increase of electric stress the tan$\delta$ increased because partial discharge occurred inside butt gap of mini-model cable. However, the tan$\delta$ decreased by increase of liquid nitrogen pressure. This reason is thought by decrease of part discharge between butt gap by increase of liquid nitrogen pressure.