• Title/Summary/Keyword: Underground Excavation

Search Result 846, Processing Time 0.023 seconds

An Experimental Study on the Earth Pressure on the Underground Box Structure (지하 박스구조물에 작용하는 토압에 관한 실험적 연구)

  • 김은섭;이상덕
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.4
    • /
    • pp.235-246
    • /
    • 1999
  • Some of the underground structures such as subway tunnels are constructed by open cut method, in which the ground is excavated, a structure installed, and after that the excavated space is backfilled. In this case, because of their narrow and constrained boundary conditions, the earth pressure induced by self-weight of the backfilled soil acting on the underground structures is different from that of the classical theory. The vertical and horizontal earth pressures acting on upper slab and side wall of the underground structures constructed by open cut method are affected by the backfill geometry. The laboratory model tests were performed in the conditions of a variety of the shapes of backfill geometry and wall friction. And their results were compared with those from theories. As a result, it was observed that the distribution of the earth pressure acting on the underground structure is affected by the shapes of backfill geometry, the width of backfill, the angle of excavation and the wall friction.

  • PDF

A study on heading failure mode for underground excavation in cohesionless soils (비점착성 지반의 지하공간 굴착면 파괴모드에 대한 연구)

  • Shin, Jong-Ho;Kwon, Oh-Yeob;Cho, Jae-Wan;Choi, Min-Gu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.3
    • /
    • pp.197-207
    • /
    • 2005
  • Design analysis for underground spaces requires evaluating stability related to heading collapses. A failure mode is one of the critical factors in the conventional methods of stability evaluation. Identification of failure modes is, therefore, essential in securing safe construction. In this study failure modes at the tunnel heading in cohesionless soils are investigated using physical model tests for various tunnel depths and ground surface inclinations. Test results showed that the effect of depth and the inclination of ground surface on a failure mode are of significance. It is identified that, with an increase in depth, failure modes become localized in a region close to tunnel face. It is also known that an increase in the inclination of ground surface results in inclined an d wide failure modes. Numerical simulation of laboratory tests was performed, and shown that the numerical analysis is useful in identifying the heading failure modes, particularly for large underground spaces.

  • PDF

Back Analysis of Displacements Measured During Excavation of Underground Storage Caverns

  • Lee, Chung-In;Lee, Youn-Kyou;Kim, Chee-Hwan
    • Geotechnical Engineering
    • /
    • v.12 no.3
    • /
    • pp.83-98
    • /
    • 1996
  • In this paper, the results of back analysis based on, the inverse method are presented. Using the field measurements obtained from the two different underground storage caverns in Korea during their construction, the deformation modulus and the initial in-situ stresses of the rock masses around the access tunnels are calculated. The finite element analysis is carried out by usinB these results as input parameters. The calculated displacements are compared with the measured ones.

  • PDF

A Study on the Grouting Using a Anti-Swelling of mud stone (미고결된 이암층의 Swelling 방지 그라우팅에 대한 연구)

  • Chun, Byung-Sik;Jung, Kyoung-Sik;Do, Jong-Nam;Lee, Jung-Jae;Kim, Chang-Geun;Kim, Jong-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1204-1209
    • /
    • 2006
  • Grouting operate to reinforce expanded clay ground. Cement grouting is one of the most frequently used techniques for underground construction. This work is going to use to add an electrolytic ion to boring water for expanded reduction. To construct underground structures on expanded clay ground is operated pre-grouting that it is the barrier wall previous excavation to prevent an accident. Grouting for early compressive strength development is made a type of suspension. That grouting aims to prevent the swelling magnification in length of time. From now on, grouting is became a type of higher strength suspension to develop early compressive strength.

  • PDF

A study on the hydro-mechanical behavior of jointed rock masses around underground excavation by using a discrete joint network modeling

  • Lee Young-Soak;Lee Seung-Do;Jue Kwang-Sue;Moon Hyun-Koo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.115-121
    • /
    • 2003
  • Discrete joint network approach has widely been used to investigate the hydraulic behavior of jointed rock masses. In general, joints will undergo deformation due to stress redistribution induced by construction of underground openings, hence joint aperture is often assumed to have a probability distribution rather than to be a constant value. In real situations, however, it is more reasonable to take into account the effect of stress change on aperture values by calculating joint deformation. In this report, a mechanical process has been developed to determine the joint opening or closure based on a statistically generated joint network model. By performing numerical analyses, some significant results on the hydro-mechanical behavior of jointed rock masses have been summarized.

  • PDF

현장 설계직의 역해석에 의한 지하공동 조원 암반의 응력해석 및 변형거동에 관한 연구 : (ll) 역해석 이론

  • 이정인;김치환
    • Tunnel and Underground Space
    • /
    • v.1 no.2
    • /
    • pp.204-217
    • /
    • 1991
  • In this study, the elastic modulus and the initial stresses of the rock were calculated through back analysis of in-situ displacements measured during excavation of the underground caverns. Results from back analysis were employed to determine the redistributed stresses the displacements and relaxed zone in the rock around the caverns, which supplement the geological characterization results. To verify the reliability of the back analysis program the elastic modulus and the initial stresses were obtained from inputting the displacements calculated by FEM. These were compared with the assumed normalized stresses in FEM and were in a reasonable agreement with an error of more or less than 3%.

  • PDF

Mechanical behavior of an underground research facility in Korea Atomic Energy Research Institute

  • Kwon S.K.;Cho W.J.;Hahn P.S.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.245-252
    • /
    • 2005
  • An underground research facility (KURF) is under construction at KAERI for the in situ studies related to the validation of a HLW disposal system. For the safe construction and long-term researches at KURF, mechanical stability of the facility should be evaluated. In this study, 3D mechanical stability analysis using the rock mass properties determined from various in situ as well as laboratory tests was carried out. From the analysis, it was possible to predict the rock deformation, stress concentration, and plastic zone developed before and after the excavation. A test blasting was performed to characterize the site dependent dynamic response, which can be used for the prediction of the blasting impact on the facilities in KAERI.

  • PDF

A Case Study on the Application and History of Stuts System using the Underground Excavation Construction (지하굴착공사에 적용되는 버팀 시스템의 변화와 적용 사례연구)

  • Lee, Jung-Jae;Jung, Kyoung-Sik;Roh, Bae-Young;Kim, Hong-Taek
    • 기술발표회
    • /
    • s.2006
    • /
    • pp.54-65
    • /
    • 2006
  • Since timbering of a cut in association with underground excavtion work is introduced to domestic, in spite of limitation of special quality in this method, time change, variety of construction, Strut Method is still considered with general methods. Experts have developed methods which is improved in limitation of special quality by continuous studies of normal strut method in basic, and it has been applied to construction site Consequently, this study introduced improved Strut Method to help experts when they select resonable methods with regard to construction site, conditions

  • PDF

Downward Method of H-PILE Alternative Materials of Percusion Rotary Drill (PRD시공시 H-PILE 대체 자재로 원가절감 할수 있는 공법 사례)

  • Lee, Wang-Hee;Lee, Il-Jae;Iim, Si-Nae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.199-202
    • /
    • 2014
  • In recent years the downtown, Top-down method has been applied in a major method to solve the complaints due to noise, vibration, dust and safety issues such as cracking due to settlement when the excavation close to the building. Until it is installed underground permanent foundation, the Pre-founded Column is a pile foundation as well as a column to bear the upper construction load. The Pre-founded Column is constructed by PRD method generally. The EnP(Enlarging Pile) method can be expanded locally boring diameter of the embedment zone as compared to the PRD method existing general. Since the bearing capacity is increased by the boring diameter is expanded, the embedment length is reduced, the construction cost is reduced.

  • PDF

A Study on Repairing Retired Underground Buried Pipes Using RTM (RTM을 이용한 노후 지하 매설관의 보수-보강에 관한 연구)

  • 진우석;권재욱;이대길
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.249-252
    • /
    • 2000
  • To overcome problems of excavation technology far repairing or replacing underground buried pipes which are worn out or damaged, various trenchless repair-reinforcement technologies have been invented. But these trenchless technologies also have many problems in the aspect of economy and convenience of operation. In this research, the repair-reinforcement process using RTM (Resin Transfer Molding) which can solve problems of present trenchless technologies was developed. The resin wetting and void removal during RTM process to form large composite structures inside of buried pipes were experimentally investigated. From the experiment, it was found that the new technology had advantage over conventional methods by employing appropriate process parameters and void removal vents.

  • PDF