• Title/Summary/Keyword: Underground Excavation

Search Result 844, Processing Time 0.027 seconds

THE PRIORITIZATION OF IMPROVEMENT NEEDS FOR UNDERGROUND CONSTRUCTION ENVIRONMENT

  • Sanggyu Lee;Goune Kang;Chang-Won Kim;Hunhee Cho;Kyung-In Kang
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.111-114
    • /
    • 2013
  • Underground construction requires long construction duration and a variety of equipment, and environmental management and improvement of its activities are considered necessary. For the purpose of the environmental improvement of underground construction activities, the appropriate development of technologies to reduce generated pollutants is mandatory. However, the analysis of the needs of technology development and the evaluation of development priorities should take precedence. In this research, the needs for the improvement of each construction activity are analyzed as a preliminary study for a proposed technology development plan to improve the environmental performance of underground construction. Firstly, environmental problem factors caused by underground construction activities are determined while underground construction types, methods, and activities are classified. A questionnaire survey to determine the needs for the improvement of each activity is then carried out. The survey indicated that the most urgent activity to be improved is that of cutting excavation, which causes environmental problems associated with flying dust. This study could be used as a basis for a technology development plan for the environmental improvement of underground construction activities. The result of this study, the priority of improvement needs, contributes to the effective allocation of a limited Research and Development (R&D) budget.

  • PDF

A Study for Safety Management on Ground Excavation by Analysis of Accident Events (사고사례 분석을 통한 흙막이 굴착공사 안전관리 개선방안 연구)

  • Seong, Joo Hyun;Jung, Soo Hyung;Shin, Ju Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.175-183
    • /
    • 2011
  • With recent growth of population and industry, urban development grows into grand scheme of excavation and construction in urban area. As the development progress advanced, the developments get large and deepen. With a progress of technology development in geotechnical engineering in Korea, most our grand scheme of projects follows great progress. On the other hand, some excavation in construction site caused direct or indirect event that affects the adjacent or surrounding structures by excavation from time to time. This event usually happens around residential and commercial area where underground tunnel, subway station, commercial building, and high-rises excavation site is, could lead great damage on economy as well as personal injury or human casualties. In order to prevent this event, the study has to be done with analysis on various events of excavation and its cause. In this paper, the research has collected the various excavation events and their causes to analyze on each site and event to define emphasis on surrounding environment.

Earth Pressure Distribution on Retention Walls in the Excavation of Multi -Layered Ground (다층지반 굴착시 토류벽에 작용하는 토압분포)

  • 이종규;전성곤
    • Geotechnical Engineering
    • /
    • v.9 no.1
    • /
    • pp.59-68
    • /
    • 1993
  • In deep excavations for creation of underground spaces, it would be difficult to predict earth pressure, especially multilayered ground including rock strata. The earth pressures and displacements on the retention walls are measured by load cell, strain gauge and inclinometer which were installed at struts or anchors at 4 deep excavation sites in Seoul area. In this paper, the measured earth pressure from the struts or anchors are compared with Peck's empirical values, and the coefficient of the earth pressures for each strata and horizontal wall displacement are investigated. The coefficient of earth pressure distribution, a(0.65zka), in the flexible and the rigid walls was about 74% and 88% of Peck's value respecitively. The measured earth pressure distributions for the 4 sites showed about 70%∼80% of Peck's empirical values and the average earth pressure coefficients based on the measured data were 0.3 for the felted layer, 0.23 for the weathered rock and 0.19 for the weak rock. The maximum w리1 displacements were found to be less 0.2% of excavation depth.

  • PDF

A Study on the Evaluation of Necessity for the Support in Case of Excavartion of the Transport Drift at Danyang Site (단양지역의 운방갱도 굴착시 갱도 지보의 필요성 판정에 관한 연구)

  • 이종욱;조만섭;김일중;김영석
    • Tunnel and Underground Space
    • /
    • v.3 no.1
    • /
    • pp.54-62
    • /
    • 1993
  • In order to evaluate the necessity for the support during the excavation of the transport drift and use the data for design applications, laboratory testings of mechanical properties of rock samples and engineering rock mass classifications on this study site were performed. The values of RMR and Q-system are 68 and 11.8, respectively. Since these results were evaluated as good, this rock mass were determined to be unsupported. Full face excavation method was determined to be suitable for excavating this drift. In case of excavation, smooth blasting techniques must be carried out at the wall rock and the crown. However, considering the blast vibration etc. that have an effect on the surrounding rock mass, approximately less than 9kg of explosive charges per blast should be maintained.

  • PDF

Literature Review of Fracture Mechanics and Blasting and Excavation Damaged Zone (파괴역학과 굴찰과 발파로 인한 암반 손상영역의 문헌적 고찰)

  • Yang H.S.;Ha T.W.;Kim W.B.;Jung J.H.
    • Tunnel and Underground Space
    • /
    • v.16 no.3 s.62
    • /
    • pp.209-217
    • /
    • 2006
  • Literatures on the fracture mechanics and damaged zone of rocks were studied to estimate the excavation and blasting damaged zone for rapid tunneling. Fracture mechanics were applied to explain fracture mechanism and to estimate damaged zone and seemed to be applicable for controlling the fractures.

Surface Subsidence according to Progressive Collapse of Circular opening (원형공동의 점진적인 붕락에 따른 지표침하특성)

  • 지정배;김종우
    • Tunnel and Underground Space
    • /
    • v.10 no.1
    • /
    • pp.33-44
    • /
    • 2000
  • In order to investigate the effect of progressive collapse of underground circular opening on surface subsidence, laboratory model tests were performed. The modelling materials were sand which has been used as KS standard. Six test models which had respectively different depths of openings were produced. Surface subsidence and horizontal displacements were measured according to progressive collapse of underground opening. Some subsidence prediction method such as NCB method, profile function method and influence function method were considered to predict the subsidence of sand models. The profile function method approximated by Gaussian error function was finally suggested as the most appropriate to sand models.

  • PDF

Ground vibrations due to underground trains considering soil-tunnel interaction

  • Yang, Y.B.;Hung, H.H.;Hsu, L.C.
    • Interaction and multiscale mechanics
    • /
    • v.1 no.1
    • /
    • pp.157-175
    • /
    • 2008
  • A brief review of the research works on ground vibrations caused by trains moving in underground tunnels is first given. Then, the finite/infinite element approach for simulating the soil-tunnel interaction system with semi-infinite domain is summarized. The tunnel is assumed to be embedded in a homogeneous half-space or stratified soil medium. The train moving underground is modeled as an infinite harmonic line load. Factors considered in the parametric studies include the soil stratum depth, damping ratio and shear modulus of the soil with or without tunnel, and the thickness of the tunnel lining. As far as ground vibration is concerned, the existence of a concrete tunnel may somewhat compensate for the loss due to excavation of the tunnel. For a soil stratum resting on a bedrock, the resonance peak and frequency of the ground vibrations caused by the underground load can be rather accurately predicted by ignoring the existence of the tunnel. Other important findings drawn from the parametric studies are given in the conclusion.

Evaluation of Construction Applicability for Slurry Backfill Materials of Underground Power Cable (지중송전관로 유동화 뒷채움재의 시공성 평가)

  • Kim, Dae-Hong;Cho, Hwa-Kyung;Oh, Gi-Dae;Lee, Dae-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1068-1075
    • /
    • 2006
  • Flow-able backfill is known as soil-cement slurry, void fill, and controlled low-strength material (CLSM). The benefits of CLSM include reduced equipment costs, faster construction, re-excavation in the future, and the ability to place material in confined spaces such as narrow parts nearly impossible for compaction or perimeter of underground power cables. A review of some recent full-scale tests carried out by KEPRI on slurry backfill materials for application in underground power cable was presented. Based on this research, applicability was assessed and compare to results of laboratory tests for improved slurry materials with optimal mixture contents.

  • PDF

Development of Underground Displacement and Convergence Auto-Measuring Program for the Tunnel Using the Fiber Optic Sensor (광섬유 센서를 이용한 터널 지중 및 내공변위 자동계측 프로그램 개발)

  • Choi, Myong-Ho;Yoon, Ji-Son;Kwon, Oh-Duk;Kwon, Oh-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1361-1368
    • /
    • 2005
  • In this paper, the theoretical method of measuring the tunnel convergence and underground displacement, the objective indices of assessing safety for tunnel construction, using the fiber optic sensor is studied by developing the program to automatically measure them. The model test of Con'c beam is conducted to evaluate reliability of the fiber optic sensor. Furthermore, using the RS232 communication protocol as well as Visual C# and Visual C++, the programming tools, the program was developed to detect automatically the measured value of the fiber optic sensor, calculate the tunnel convergence and underground displacement, predict the deformed shape of the tunnel, and evaluate loosening zone due to the tunnel excavation.

  • PDF

Analysis of Blasting Overbreak using Stereo Photogrammetry in an Underground Mine (입체사진측량기법을 이용한 지하 광산의 발파 여굴 분석에 관한 연구)

  • Lee, Seung-Joong;Choi, Sung-Oong;Lee, Sudeuk;Jeon, Seokwon;Jin, Yeon-Ho;Jung, Min-Su
    • Tunnel and Underground Space
    • /
    • v.26 no.5
    • /
    • pp.348-362
    • /
    • 2016
  • This study describes the results of blasting overbreak analysis using the stereo photogrammetry method in an underground mine. For comparing its quantitative measurements, LIDAR system was applied to the test site and blasting overbreak was analyzed for 4 test blasting operations. The difference in values obtained from the two methods showed only 0.81% in volume and 1.05% in area, respectively, therefore authors verify the field applicability of stereo photogrammetry method on underground mine. The volumes of overbreak measured from 4 test blastings were $29.84m^3$, $22.45m^3$, $14.54m^3$ and $5.46m^3$, respectively, in photogrammetry analysis on excavation surface, and it was shown that the volume of overbreak decreases with blasting sequence. From these measurements, it is concluded that the stereo photogrammetry method can describe the underground excavation surface effectively and the its quantitative data can be used for analysis of volume, area and overbreak of excavation zone.